
Chapter 2

Convex geometry

Convexity has an immensely rich structure and numerous applications. On the
other hand, almost every “convex” idea can be explained by a two-dimensional
picture.

−Alexander Barvinok [27, p.vii]

We study convex geometry because it is the easiest of geometries. For that reason, much
of a practitioner’s energy is expended seeking invertible transformation of problematic sets
to convex ones.

As convex geometry and linear algebra are inextricably bonded by linear inequality
(asymmetry), we provide much background material on linear algebra (especially in the
appendices) although a reader is assumed comfortable with [348] [350] [218] or any other
intermediate-level text. The essential references to convex analysis are [215] [325]. The
reader is referred to [347] [27] [410] [43] [63] [322] [377] for a comprehensive treatment of
convexity. There is relatively less published pertaining to convex matrix-valued functions.
[231] [219, §6.6] [312]

2.1 Convex set

A set C is convex iff for all Y , Z∈ C and 0≤µ≤1

µY + (1 − µ)Z ∈ C (1)

Under that defining condition on µ , the linear sum in (1) is called a convex combination
of Y and Z . If Y and Z are points in real finite-dimensional Euclidean vector space [243]
[419] Rn or Rm×n (matrices), then (1) represents the closed line segment joining them.
Line segments are thereby convex sets; C is convex iff the line segment connecting any two
points in C is itself in C . Apparent from this definition: a convex set is a connected set.
[274, §3.4, §3.5] [43, p.2] A convex set can, but does not necessarily, contain the origin 0.
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An ellipsoid centered at x = a (Figure 15 p.39), given matrix C∈Rm×n

{x∈Rn | ‖C(x − a)‖2 = (x − a)TCTC(x − a) ≤ 1} (2)

is a good icon for a convex set.2.1

2.1.1 subspace

A nonempty subset R of real Euclidean vector space Rn is called a subspace (§2.5) if every
vector2.2 of the form αx + βy , for α , β∈R , is in R whenever vectors x and y are.
[266, §2.3] A subspace is a convex set containing the origin, by definition. [325, p.4] Any
subspace is therefore open in the sense that it contains no boundary, but closed in the
sense [274, §2]

R + R = R (3)

It is not difficult to show
R = −R (4)

as is true for any subspace R , because x∈R ⇔ −x∈R . Given any x∈R

R = x + R (5)

Intersection of an arbitrary collection of subspaces remains a subspace. Any subspace
not constituting the entire ambient vector space Rn is a proper subspace; e.g,2.3 any line
(of infinite extent) through the origin in two-dimensional Euclidean space R2. The vector
space Rn is itself a conventional subspace, inclusively, [243, §2.1] although not proper.

2.1.2 linear independence

Arbitrary given vectors in Euclidean space {Γi∈Rn, i=1 . . . N} are linearly independent
(l.i.) if and only if, for all ζ∈RN (ζi∈R)

Γ1 ζ1 + · · · + ΓN−1 ζN−1 − ΓN ζN = 0 (6)

has only the trivial solution ζ = 0 ; in other words, iff no vector from the given set can be
expressed as a linear combination of those remaining.

Geometrically, two nontrivial vector subspaces are linearly independent iff they
intersect only at the origin.

2.1.2.1 preservation of linear independence

(confer §2.4.2.4, §2.10.1) Linear transformation preserves linear dependence. [243, p.86]
Conversely, linear independence can be preserved under linear transformation. Given
Y = [ y1 y2 · · · yN ]∈RN×N , consider the mapping

T (Γ) : Rn×N → Rn×N , ΓY (7)

2.1Ellipsoid semiaxes are eigenvectors of CTC whose lengths are inverse square root eigenvalues. This
particular definition is slablike (Figure 13) in R

n when C has nontrivial nullspace.
2.2A vector is assumed, throughout, to be a column vector.
2.3We substitute abbreviation e.g in place of the Latin exempli gratia.
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{y∈R2 | c ≤ aTy ≤ b} (2064)

Figure 13: A slab is a convex Euclidean body infinite in extent but not affine. Illustrated
in R2, it may be constructed by intersecting two opposing halfspaces whose bounding
hyperplanes are parallel but not coincident. Because number of halfspaces used in
its construction is finite, slab is a polyhedron (§2.12). (Cartesian axes + and vector
inward-normal, to each halfspace-boundary, are drawn for reference.)

whose domain is the set of all matrices Γ∈Rn×N holding a linearly independent set
columnar. Linear independence of {Γyi∈Rn, i=1 . . . N} demands, by definition, there
exist no nontrivial solution ζ∈RN to

Γy1 ζi + · · · + ΓyN−1 ζN−1 − ΓyN ζN = 0 (8)

By factoring out Γ , we see that triviality is ensured by linear independence of {yi∈RN}.

2.1.3 Orthant:

name given to a closed convex set that is the higher-dimensional generalization of quadrant
from the classical Cartesian partition of R2 ; a Cartesian cone. The most common is the
nonnegative orthant Rn

+ or Rn×n
+ (analogue to quadrant I) to which membership denotes

nonnegative vector- or matrix-entries respectively; e.g,

Rn
+ , {x∈Rn | xi≥ 0 ∀ i} (9)

The nonpositive orthant Rn
− or Rn×n

− (analogue to quadrant III) denotes negative and 0
entries. Orthant convexity2.4 is easily verified by definition (1).

2.1.4 affine set

A nonempty affine set (from the word affinity) is any subset of Rn that is a translation
of some subspace. Any affine set is convex and open so contains no boundary: e.g, empty
set ∅ , point, line, plane, hyperplane (§2.4.2), subspace, etcetera. The intersection of an
arbitrary collection of affine sets remains affine.

2.4All orthants are selfdual simplicial cones. (§2.13.5.1, §2.12.3.1.1)
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2.1.4.0.1 Definition. Affine subset.
We analogize affine subset to subspace,2.5 defining it to be any nonempty affine set of
vectors; an affine subset of Rn. △

For some parallel 2.6 subspace R and any point x∈A

A is affine ⇔ A = x + R
= {y | y − x∈R}

(10)

Affine hull of a set C⊆Rn (§2.3.1) is the smallest affine set containing it.

2.1.5 dimension

Dimension of an arbitrary set S is Euclidean dimension of its affine hull; [410, p.14]

dimS , dim aff S = dim aff(S − s) , s∈S (11)

the same as dimension of the subspace parallel to that affine set aff S when nonempty.
Hence dimension (of a set) is synonymous with affine dimension. [215, A.2.1]

2.1.6 empty set versus empty interior

Emptiness ∅ of a set is handled differently than interior in the classical literature. It is
common for a nonempty convex set to have empty interior; e.g, paper in the real world:

� An ordinary flat sheet of paper is a nonempty convex set having empty interior in
R3 but nonempty interior relative to its affine hull.

2.1.6.1 relative interior

Although it is always possible to pass to a smaller ambient Euclidean space where a
nonempty set acquires an interior [27, §II.2.3], we prefer the qualifier relative which is the
conventional fix to this ambiguous terminology.2.7 So we distinguish interior from relative
interior throughout: [347] [410] [377]

� Classical interior int C is defined as a union of points: x is an interior point of C⊆Rn

if there exists an open ball of dimension n and nonzero radius centered at x that is
contained in C .

� Relative interior rel int C of a convex set C⊆ Rn is interior relative to its affine
hull.2.8

2.5The popular term affine subspace is an oxymoron.
2.6Two affine sets are parallel when one is a translation of the other. [325, p.4]
2.7Superfluous mingling of terms as in relatively nonempty set would be an unfortunate consequence.

From the opposite perspective, some authors use the term full or full-dimensional to describe a set having
nonempty interior.
2.8Likewise for relative boundary (§2.1.7.2), although relative closure is superfluous. [215, §A.2.1]
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(a)

(b)

(c)

R2

Figure 14: (a) Closed convex set. (b) Neither open, closed, or convex. Yet PSD cone
can remain convex in absence of certain boundary components (§2.9.2.9.3). Nonnegative
orthant with origin excluded (§2.6) and positive orthant with origin adjoined [325, p.49]
are convex. (c) Open convex set.

Thus defined, it is common (though confusing) for int C the interior of C to be empty
while its relative interior is not: this happens whenever dimension of its affine hull is less
than dimension of the ambient space (dim aff C< n ; e.g, were C paper) or in the exception
when C is a single point; [274, §2.2.1]

rel int{x} , aff{x} = {x} , int{x} = ∅ , x∈Rn (12)

In any case, closure of the relative interior of a convex set C always yields closure of
the set itself;

rel int C = C (13)

Closure is invariant to translation. If C is convex then rel int C and C are convex.
[215, p.24] If C has nonempty interior, then

rel int C= int C (14)

Given the intersection of convex set C with affine set A

rel int(C ∩ A) = rel int(C) ∩ A ⇐ rel int(C) ∩ A 6= ∅ (15)

Because an affine set A is open

rel intA = A (16)
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2.1.7 classical boundary

(confer §2.1.7.2) Boundary of a set C is the closure of C less its interior;

∂ C = C \ int C (17)

[56, §1.1] which follows from the fact

int C = C ⇔ ∂ int C = ∂ C (18)

and presumption of nonempty interior.2.9 Implications are:

� int C = C \∂ C
� a bounded open set has boundary defined but not contained in the set

� interior of an open set is equivalent to the set itself;

from which an open set is defined: [274, p.109]

C is open ⇔ int C = C (19)

C is closed ⇔ int C = C (20)

The set illustrated in Figure 14b is not open because it is not equivalent to its interior,
for example, it is not closed because it does not contain its boundary, and it is not convex
because it does not contain all convex combinations of its boundary points.

2.1.7.1 Line intersection with boundary

A line can intersect the boundary of a convex set in any dimension at a point demarcating
the line’s entry to the set interior. On one side of that entry-point along the line is the
exterior of the set, on the other side is the set interior. In other words,

� starting from any point of a convex set, a move toward the interior is an immediate
entry into the interior. [27, §II.2]

When a line intersects the interior of a convex body in any dimension, the boundary
appears to the line to be as thin as a point. This is intuitively plausible because, for
example, a line intersects the boundary of the ellipsoids in Figure 15 at a point in R ,
R2, and R3. Such thinness is a remarkable fact when pondering visualization of convex
polyhedra (§2.12, §5.14.3) in four Euclidean dimensions, for example, having boundaries
constructed from other three-dimensional convex polyhedra called faces.

We formally define face in (§2.6). For now, we observe the boundary of a convex body to
be entirely constituted by all its faces of dimension lower than the body itself. Any face of a
convex set is convex. For example: The ellipsoids in Figure 15 have boundaries composed
only of zero-dimensional faces. The two-dimensional slab in Figure 13 is an unbounded
polyhedron having one-dimensional faces making its boundary. The three-dimensional
bounded polyhedron in Figure 22 has zero-, one-, and two-dimensional polygonal faces
constituting its boundary.

2.9Otherwise, for x∈R
n as in (12), [274, §2.1-§2.3]

int{x} = ∅ = ∅
the empty set is both open and closed.
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(a)

(b)

(c)

R

R2
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Figure 15: (a) Ellipsoid in R is a line segment whose boundary comprises two points.
Intersection of line with ellipsoid in R , (b) in R2, (c) in R3. Each ellipsoid illustrated
has entire boundary constituted by zero-dimensional faces; in fact, by vertices (§2.6.1.0.1).
Intersection of line with boundary is a point at entry to interior. These same facts hold
in higher dimension.
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2.1.7.1.1 Example. Intersection of line with boundary in R6.
The convex cone of positive semidefinite matrices S3

+ (§2.9), in the ambient subspace of

symmetric matrices S3 (§2.2.2.0.1), is a six-dimensional Euclidean body in isometrically
isomorphic R6 (§2.2.1). Boundary of the positive semidefinite cone, in this dimension,
comprises faces having only the dimensions 0, 1, and 3 ; id est, {ρ(ρ+1)/2, ρ=0, 1, 2}.

Unique minimum-distance projection PX (§E.9) of any point X∈ S3 on that cone
S3

+ is known in closed form (§7.1.2). Given, for example, λ∈ int R3

+ and diagonalization
(§A.5.1) of exterior point

X = QΛQT∈ S3, Λ ,





λ1 0
λ2

0 −λ3



 (21)

where Q∈R3×3 is an orthogonal matrix, then the projection on S3

+ in R6 is

PX = Q





λ1 0
λ2

0 0



QT∈ S3

+ (22)

This positive semidefinite matrix PX nearest X thus has rank 2, found by discarding all
negative eigenvalues in Λ . The line connecting these two points is {X + (PX−X)t | t∈R}
where t=0 ⇔ X and t=1 ⇔ PX . Because this line intersects the boundary of the
positive semidefinite cone S3

+ at point PX and passes through its interior (by assumption),
then the matrix corresponding to an infinitesimally positive perturbation of t there should
reside interior to the cone (rank 3). Indeed, for ε an arbitrarily small positive constant,

X + (PX−X)t|t=1+ε = Q(Λ+(PΛ−Λ)(1+ ε))QT = Q





λ1 0
λ2

0 ελ3



QT∈ int S3

+ (23)

2

2.1.7.1.2 Example. Tangential line intersection with boundary.
A higher-dimensional boundary ∂C of a convex Euclidean body C is simply a
dimensionally larger set through which a line can pass when it does not intersect the body’s
interior. Still, for example, a line existing in five or more dimensions may pass tangentially
(intersecting no point interior to C [235, §15.3]) through a single point relatively interior
to a three-dimensional face on ∂C . Let’s understand why by inductive reasoning.

Figure 16a shows a vertical line-segment whose boundary comprises its two endpoints.
For a line to pass through the boundary tangentially (intersecting no point relatively
interior to the line-segment), it must exist in an ambient space of at least two dimensions.
Otherwise, the line is confined to the same one-dimensional space as the line-segment and
must pass along the segment to reach the end points.

Figure 16b illustrates a two-dimensional ellipsoid whose boundary is constituted
entirely by zero-dimensional faces. Again, a line must exist in at least two dimensions
to tangentially pass through any single arbitrarily chosen point on the boundary (without
intersecting the ellipsoid interior).
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R2

(a) (b)

(c) (d)

R3

Figure 16: Line tangential: (a) (b) to relative interior of a zero-dimensional face in R2,
(c) (d) to relative interior of a one-dimensional face in R3.



42 CHAPTER 2. CONVEX GEOMETRY

Now let’s move to an ambient space of three dimensions. Figure 16c shows a polygon
rotated into three dimensions. For a line to pass through its zero-dimensional boundary
(one of its vertices) tangentially, it must exist in at least the two dimensions of the polygon.
But for a line to pass tangentially through a single arbitrarily chosen point in the relative
interior of a one-dimensional face on the boundary as illustrated, it must exist in at least
three dimensions.

Figure 16d illustrates a solid circular cone (drawn truncated) whose one-dimensional
faces are halflines emanating from its pointed end (vertex ). This cone’s boundary is
constituted solely by those one-dimensional halflines. A line may pass through the
boundary tangentially, striking only one arbitrarily chosen point relatively interior to a
one-dimensional face, if it exists in at least the three-dimensional ambient space of the
cone.

From these few examples, way deduce a general rule (without proof):

� A line may pass tangentially through a single arbitrarily chosen point relatively
interior to a k-dimensional face on the boundary of a convex Euclidean body if the
line exists in dimension at least equal to k+2.

Now the interesting part, with regard to Figure 22 showing a bounded polyhedron in R3 ;
call it P : A line existing in at least four dimensions is required in order to pass tangentially
(without hitting intP) through a single arbitrary point in the relative interior of any
two-dimensional polygonal face on the boundary of polyhedron P . Now imagine that
polyhedron P is itself a three-dimensional face of some other polyhedron in R4. To pass
a line tangentially through polyhedron P itself, striking only one point from its relative
interior rel intP as claimed, requires a line existing in at least five dimensions.2.10

It is not too difficult to deduce:

� A line may pass through a single arbitrarily chosen point interior to a k-dimensional
convex Euclidean body (hitting no other interior point) if that line exists in dimension
at least equal to k+1.

In layman’s terms, this means: a being capable of navigating four spatial dimensions
(one Euclidean dimension beyond our physical reality) could see inside three-dimensional
objects. 2

2.1.7.2 Relative boundary

The classical definition of boundary of a set C presumes nonempty interior:

∂ C = C \ int C (17)

More suitable to study of convex sets is the relative boundary ; defined [215, §A.2.1.2]

rel ∂ C , C \ rel int C (24)

boundary relative to affine hull of C .

2.10This rule can help determine whether there exists unique solution to a convex optimization problem
whose feasible set is an intersecting line; e.g, the trilateration problem (§5.4.2.2.8).
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In the exception when C is a single point {x} , (12)

rel ∂{x} = {x}\{x} = ∅ , x∈Rn (25)

A bounded convex polyhedron (§2.3.2, §2.12.0.0.1) in subspace R , for example, has
boundary constructed from two points, in R2 from at least three line segments, in R3

from convex polygons, while a convex polychoron (a bounded polyhedron in R4 [412]) has
boundary constructed from three-dimensional convex polyhedra. A halfspace is partially
bounded by a hyperplane; its interior therefore excludes that hyperplane. An affine set
has no relative boundary.

2.1.8 intersection, sum, difference, product

2.1.8.0.1 Theorem. Intersection. [325, §2, thm.6.5]
Intersection of an arbitrary collection of convex sets {Ci} is convex. For a
finite collection of N sets, a necessarily nonempty intersection of relative interior
⋂N

i=1rel int Ci = rel int
⋂N

i=1Ci equals relative interior of intersection. And for a possibly

infinite collection,
⋂ Ci =

⋂ Ci . ⋄

In converse this theorem is implicitly false insofar as a convex set can be formed by the
intersection of sets that are not. Unions of convex sets are generally not convex. [215, p.22]

Vector sum of two convex sets C1 and C2 is convex [215, p.24]

C1+ C2 = {x + y | x ∈ C1 , y ∈ C2} (26)

but not necessarily closed unless at least one set is closed and bounded.
By additive inverse, we can similarly define vector difference of two convex sets

C1− C2 = {x − y | x ∈ C1 , y ∈ C2} (27)

which is convex. Applying this definition to nonempty convex set C1 , its selfdifference
C1− C1 is generally nonempty, nontrivial, and convex; e.g, for any convex cone K , (§2.7.2)
the set K − K constitutes its affine hull. [325, p.15]

Cartesian product of convex sets

C1× C2 =

{[

x
y

]

| x ∈ C1 , y ∈ C2

}

=

[

C1

C2

]

(28)

remains convex. The converse also holds; id est, a Cartesian product is convex iff each set
is. [215, p.23]

Convex results are also obtained for scaling κ C of a convex set C , rotation/reflection
Q C , or translation C+ α ; each similarly defined.

Given any operator T and convex set C , we are prone to write T (C) meaning

T (C) , {T (x) | x∈ C} (29)

Given linear operator T , it therefore follows from (26),

T (C1 + C2) = {T (x + y) | x∈ C1 , y∈ C2}
= {T (x) + T (y) | x∈ C1 , y∈ C2}
= T (C1) + T (C2)

(30)
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f

f

f−1(F ) F

C

f(C)

(b)

(a)

Figure 17: (a) Image of convex set in domain of any convex function f is convex, but
there is no converse. (b) Inverse image under convex function f .

2.1.9 inverse image

While epigraph (§3.5) of a convex function must be convex, it generally holds that inverse
image (Figure 17) of a convex function is not. The most prominent examples to the
contrary are affine functions (§3.4):

2.1.9.0.1 Theorem. Inverse image. [325, §3]
Let f be a mapping from Rp×k to Rm×n.

� The image of a convex set C under any affine function

f(C) = {f(X) | X∈ C} ⊆ Rm×n (31)

is convex.

� Inverse image of a convex set F ,

f−1(F ) = {X | f(X)∈F} ⊆ Rp×k (32)

a single- or many-valued mapping, under any affine function f is convex. ⋄

In particular, any affine transformation of an affine set remains affine. [325, p.8]
Ellipsoids are invariant to any [sic ] affine transformation.
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replacemen

xp

Rn

Axp = b

Ax = b

R(AT) R(A)

N (A) N (AT)

Aη = 0
η

x=xp+ η

b

Rm

{b}

xp =A†b

00
{x}

Figure 18: (confer Figure 175) Action of linear map represented by A∈Rm×n :
Component of vector x in nullspace N (A) maps to origin while component in rowspace
R(AT) maps to range R(A). For any A∈Rm×n, A†Ax = xp and AA†Ax = b (§E) and
inverse image of b∈R(A) is a nonempty affine set: xp+ N (A).

Although not precluded, this inverse image theorem does not require a uniquely
invertible mapping f . Figure 18, for example, mechanizes inverse image under a general
linear map. Example 2.9.1.0.2 and Example 3.5.0.0.2 offer further applications.

Each converse of this two-part theorem is generally false; id est, given f affine, a
convex image f(C) does not imply that set C is convex, and neither does a convex inverse
image f−1(F ) imply set F is convex. A counterexample, invalidating a converse, is easy
to visualize when the affine function is an orthogonal projector [348] [266]:

2.1.9.0.2 Corollary. Projection on subspace.2.11 (2037) [325, §3]
Orthogonal projection of a convex set on a subspace or nonempty affine set is another
convex set. ⋄

Again, the converse is false. Shadows, for example, are umbral projections that can be
convex when the body providing the shade is not.

2.2 Vectorized-matrix inner product

Euclidean space Rn comes equipped with a vector inner-product

〈y , z〉 , yTz = ‖y‖‖z‖ cos ψ (33)

2.11For hyperplane representations see §2.4.2. For projection of convex sets on hyperplanes see [410, §6.6].
A nonempty affine set is called an affine subset (§2.1.4.0.1). Orthogonal projection of points on affine
subsets is reviewed in §E.4.
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where ψ (1004) represents angle (in radians) between vectors y and z . We prefer those
angle brackets to connote a geometric rather than algebraic perspective; e.g, vector y
might represent a hyperplane normal (§2.4.2). Two vectors are orthogonal (perpendicular)
to one another if and only if their inner product vanishes (iff ψ is an odd multiple of π

2 );

y ⊥ z ⇔ 〈y , z〉 = 0 (34)

When orthogonal vectors each have unit norm, then they are orthonormal. A vector
inner-product defines Euclidean norm (vector 2-norm, §A.7.1)

‖y‖2 = ‖y‖ ,
√

yTy , ‖y‖ = 0 ⇔ y = 0 (35)

For linear operator A , its adjoint AT is a linear operator defined by [243, §3.10]

〈y ,ATz〉 , 〈Ay , z〉 (36)

For linear operation on a vector, represented by real matrix A , the adjoint operator AT

is its transposition. This operator is selfadjoint when A=AT.
Vector inner-product for matrices is calculated just as it is for vectors; by first

transforming a matrix in Rp×k to a vector in Rpk by concatenating its columns in the
natural order. For lack of a better term, we shall call that linear bijective (one-to-one
and onto [243, App.A1.2]) transformation vectorization. For example, the vectorization of
Y = [ y1 y2 · · · yk ]∈Rp×k [182] [344] is

vec Y ,











y1

y2
...

yk











∈ Rpk (37)

Then the vectorized-matrix inner-product is trace of matrix inner-product; for Z∈Rp×k,
[63, §2.6.1] [215, §0.3.1] [421, §8] [384, §2.2]

〈Y , Z 〉 , tr(Y TZ) = vec(Y )Tvec Z (38)

where (§A.1.1)

tr(Y TZ) = tr(Z Y T) = tr(YZT) = tr(ZTY ) = 1T(Y ◦ Z)1 (39)

and where ◦ denotes the Hadamard product 2.12 of matrices [174, §1.1.4]. The adjoint AT

operation on a matrix can therefore be defined in like manner:

〈Y , ATZ〉 , 〈AY , Z 〉 (40)

Take any element C1 from a matrix-valued set in Rp×k, for example, and consider any
particular dimensionally compatible real vectors v and w . Then vector inner-product of
C1 with vwT is

〈vwT, C1〉 = 〈v , C1w〉 = vTC1w = tr(wvTC1) = 1T
(

(vwT)◦ C1

)

1 (41)

2.12Hadamard product is a simple entrywise product of corresponding entries from two matrices of like
size; id est, not necessarily square. A commutative operation, the Hadamard product can be extracted
from within a Kronecker product. [218, p.475]
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(a) (b)

R2 R3

Figure 19: (a) Cube in R3 projected on paper-plane R2. Subspace projection operator is
not an isomorphism because new adjacencies are introduced. (b) Tesseract is a projection
of hypercube in R4 on R3.

Further, linear bijective vectorization is distributive with respect to Hadamard product;
id est,

vec(Y ◦ Z) = vec(Y ) ◦ vec(Z ) (42)

2.2.0.0.1 Example. Application of inverse image theorem.
Suppose set C ⊆ Rp×k were convex. Then for any particular vectors v∈Rp and w∈Rk,
the set of vector inner-products

Y , vTCw = 〈vwT, C〉 ⊆ R (43)

is convex. It is easy to show directly that convex combination of elements from Y remains
an element of Y .2.13 Instead given convex set Y , C must be convex consequent to inverse
image theorem 2.1.9.0.1.

More generally, vwT in (43) may be replaced with any particular matrix Z∈Rp×k while
convexity of set 〈Z , C〉⊆R persists. Further, by replacing v and w with any particular
respective matrices U and W of dimension compatible with all elements of convex set C ,
then set UTCW is convex by the inverse image theorem because it is a linear mapping
of C . 2

2.2.1 Frobenius’

2.2.1.0.1 Definition. Isomorphic.
An isomorphism of a vector space is a transformation equivalent to a linear bijective
mapping. Image and inverse image under the transformation operator are then called
isomorphic vector spaces. △
2.13To verify that, take any two elements C1 and C2 from the convex matrix-valued set C , and then form
the vector inner-products (43) that are two elements of Y by definition. Now make a convex combination
of those inner products; videlicet, for 0≤µ≤1

µ 〈vwT, C1〉 + (1 − µ) 〈vwT, C2〉 = 〈vwT, µ C1 + (1 − µ)C2〉
The two sides are equivalent by linearity of inner product. The right-hand side remains a vector
inner-product of vwT with an element µ C1 + (1 − µ)C2 from the convex set C ; hence, it belongs to
Y . Since that holds true for any two elements from Y , then it must be a convex set. ¨
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Isomorphic vector spaces are characterized by preservation of adjacency ; id est, if v
and w are points connected by a line segment in one vector space, then their images
will be connected by a line segment in the other. Two Euclidean bodies may be
considered isomorphic if there exists an isomorphism, of their vector spaces, under which
the bodies correspond. [386, §I.1] Projection (§E) is not an isomorphism, Figure 19 for
example; hence, perfect reconstruction (inverse projection) is generally impossible without
additional information.

When Z =Y ∈ Rp×k in (38), Frobenius’ norm is resultant from vector inner-product;
(confer (1781))

‖Y ‖2
F = ‖vec Y ‖2

2 = 〈Y , Y 〉 = tr(Y TY )

=
∑

i, j

Y 2
ij =

∑

i

λ(Y TY )i =
∑

i

σ(Y )2i
(44)

where λ(Y TY )i is the ith eigenvalue of Y TY , and σ(Y )i the ith singular value of Y .
Were Y a normal matrix (§A.5.1), then σ(Y )= |λ(Y )| [432, §8.1] thus

‖Y ‖2
F =

∑

i

λ(Y )2i = ‖λ(Y )‖2
2 = 〈λ(Y ) , λ(Y )〉 = 〈Y , Y 〉 (45)

The converse (45) ⇒ normal matrix Y also holds. [218, §2.5.4]
Frobenius’ norm is the Euclidean norm of vectorized matrices. Because the metrics are

equivalent, for X∈ Rp×k

‖vec X−vec Y ‖2 = ‖X−Y ‖F (46)

and because vectorization (37) is a linear bijective map, then vector space Rp×k is
isometrically isomorphic with vector space Rpk in the Euclidean sense and vec is an
isometric isomorphism of Rp×k. Because of this Euclidean structure, all known results
from convex analysis in Euclidean space Rn carry over directly to the space of real matrices
Rp×k ; e.g, norm function convexity (§3.2).

2.2.1.1 Injective linear operators

Injective mapping (transformation) means one-to-one mapping; synonymous with uniquely
invertible linear mapping on Euclidean space.

� Linear injective mappings are fully characterized by lack of nontrivial nullspace.

2.2.1.1.1 Definition. Isometric isomorphism.
An isometric isomorphism of a vector space having a metric defined on it is a linear
bijective mapping T that preserves distance; id est, for all x, y∈dom T

‖Tx − Ty‖ = ‖x − y‖ (47)

Then isometric isomorphism T is called a bijective isometry. △

Unitary linear operator Q : Rk → Rk, represented by orthogonal matrix Q∈Rk×k

(§B.5.2), is an isometric isomorphism; e.g, discrete Fourier transform via (889). Suppose
T (X)= UXQ is a bijective isometry where U is a dimensionally compatible orthonormal
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R2

R3

T

dim domT = dimR(T )

Figure 20: Linear injective mapping Tx=Ax : R2→R3 of Euclidean body remains
two-dimensional under mapping represented by skinny full-rank matrix A∈R3×2 ; two
bodies are isomorphic by Definition 2.2.1.0.1.

matrix.2.14 Then we also say Frobenius’ norm is orthogonally invariant ; meaning, for
X,Y ∈ Rp×k

‖U(X−Y )Q‖F = ‖X−Y ‖F (48)

Yet isometric operator T : R2→ R3, represented by A =





1 0
0 1
0 0



on R2, is injective

but not a surjective map to R3. [243, §1.6, §2.6] This operator T can therefore be a
bijective isometry only with respect to its range.

Any linear injective transformation on Euclidean space is uniquely invertible on its
range. In fact, any linear injective transformation has a range whose dimension equals
that of its domain. In other words, for any invertible linear transformation T [ibidem]

dim dom(T ) = dimR(T ) (49)

e.g, T represented by skinny-or-square full-rank matrices. (Figure 20) An important
consequence of this fact is:

� Affine dimension, of any n-dimensional Euclidean body in domain of operator T , is
invariant to linear injective transformation.

2.2.1.1.2 Example. Noninjective linear operators.
Mappings in Euclidean space created by noninjective linear operators can be characterized
in terms of an orthogonal projector (§E). Consider noninjective linear operator

2.14 any matrix U whose columns are orthonormal with respect to each other (UTU = I ); these include
the orthogonal matrices.
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R3R3

PT

B

PT (B)

x PTx

Figure 21: Linear noninjective mapping PTx=A†Ax : R3→R3 of three-dimensional
Euclidean body B has affine dimension 2 under projection on rowspace of fat full-rank
matrix A∈R2×3. Set of coefficients of orthogonal projection TB= {Ax |x∈B} is
isomorphic with projection P (TB) [sic ].

Tx =Ax : Rn→Rm represented by fat matrix A∈Rm×n (m< n). What can be said
about the nature of this m-dimensional mapping?

Concurrently, consider injective linear operator Py=A†y : Rm→Rn where
R(A†)=R(AT). P (Ax)= PTx achieves projection of vector x on the row space
R(AT). (§E.3.1) This means vector Ax can be succinctly interpreted as coefficients of
orthogonal projection.

Pseudoinverse matrix A† is skinny and full-rank, so operator Py is a linear bijection
with respect to its range R(A†). By Definition 2.2.1.0.1, image P (TB) of projection
PT (B) on R(AT) in Rn must therefore be isomorphic with the set of projection coefficients
TB= {Ax |x∈B} in Rm and have the same affine dimension by (49). To illustrate, we
present a three-dimensional Euclidean body B in Figure 21 where any point x in the
nullspace N (A) maps to the origin. 2

2.2.2 Symmetric matrices

2.2.2.0.1 Definition. Symmetric matrix subspace.
Define a subspace of RM×M : the convex set of all symmetric M×M matrices;

SM ,
{

A∈RM×M | A=AT
}

⊆ RM×M (50)

This subspace comprising symmetric matrices SM is isomorphic with the vector space
RM(M+1)/2 whose dimension is the number of free variables in a symmetric M×M matrix.
The orthogonal complement [348] [266] of SM is

SM⊥ ,
{

A∈RM×M | A=−AT
}

⊂ RM×M (51)
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the subspace of antisymmetric matrices in RM×M ; id est,

SM⊕ SM⊥ = RM×M (52)

where unique vector sum ⊕ is defined on page 666. △

All antisymmetric matrices are hollow by definition (have 0 main diagonal). Any
square matrix A∈RM×M can be written as a sum of its symmetric and antisymmetric
parts: respectively,

A =
1

2
(A +AT) +

1

2
(A −AT) (53)

The symmetric part is orthogonal in RM2

to the antisymmetric part; videlicet,

tr
(

(A +AT)(A −AT)
)

= 0 (54)

In the ambient space of real matrices, the antisymmetric matrix subspace can be described

SM⊥ =

{

1

2
(A −AT) | A∈RM×M

}

⊂ RM×M (55)

because any matrix in SM is orthogonal to any matrix in SM⊥. Further confined to the
ambient subspace of symmetric matrices, SM⊥ would become trivial.

2.2.2.1 Isomorphism of symmetric matrix subspace

When a matrix is symmetric in SM , we may still employ the vectorization transformation

(37) to RM2

; vec , an isometric isomorphism. We might instead choose to realize in

the lower-dimensional subspace RM(M+1)/2 by ignoring redundant entries (below the main
diagonal) during transformation. Such a realization would remain isomorphic but not
isometric. Lack of isometry is a spatial distortion due now to disparity in metric between

RM 2

and RM(M+1)/2. To realize isometrically in RM(M+1)/2, we must make a correction:
For Y = [Yij ]∈ SM we take symmetric vectorization [231, §2.2.1]

svec Y ,

























Y11√
2Y12

Y22√
2Y13√
2Y23

Y33...
YMM

























∈ RM(M+1)/2 (56)

where all entries off the main diagonal have been scaled. Now for Z∈ SM

〈Y , Z〉 , tr(Y TZ) = vec(Y )Tvec Z = 1T(Y ◦ Z)1 = svec(Y )Tsvec Z (57)

Then because the metrics become equivalent, for X∈ SM

‖svec X − svec Y ‖2 = ‖X − Y ‖F (58)



52 CHAPTER 2. CONVEX GEOMETRY

and because symmetric vectorization (56) is a linear bijective mapping, then svec is
an isometric isomorphism of the symmetric matrix subspace. In other words, SM is
isometrically isomorphic with RM(M+1)/2 in the Euclidean sense under transformation
svec .

The set of all symmetric matrices SM forms a proper subspace in RM×M , so for it
there exists a standard orthonormal basis in isometrically isomorphic RM(M+1)/2

{Eij ∈ SM} =







eie
T
i , i = j = 1 . . . M

1√
2

(

eie
T
j + ej e

T
i

)

, 1 ≤ i < j ≤ M







(59)

where M(M + 1)/2 standard basis matrices Eij are formed from the standard basis
vectors

ei =

[{

1 , i = j
0 , i 6= j

, j = 1 . . . M

]

∈ RM (60)

Thus we have a basic orthogonal expansion for Y ∈ SM

Y =
M
∑

j=1

j
∑

i=1

〈Eij , Y 〉Eij (61)

whose unique coefficients

〈Eij , Y 〉 =

{

Yii , i = 1 . . . M

Yij

√
2 , 1 ≤ i < j ≤ M

(62)

correspond to entries of the symmetric vectorization (56).

2.2.3 Symmetric hollow subspace

2.2.3.0.1 Definition. Hollow subspaces. [371]
Define a subspace of RM×M : the convex set of all (real) symmetric M×M matrices
having 0 main diagonal;

RM×M
h ,

{

A∈RM×M | A=AT, δ(A) = 0
}

⊂ RM×M (63)

where the main diagonal of A∈RM×M is denoted (§A.1)

δ(A) ∈ RM (1504)

Operating on a vector, linear operator δ naturally returns a diagonal matrix; δ(δ(A)) is

a diagonal matrix. Operating recursively on a vector Λ∈RN or diagonal matrix Λ∈ SN ,
operator δ(δ(Λ)) returns Λ itself;

δ2(Λ) ≡ δ(δ(Λ)) = Λ (1506)

The subspace RM×M
h (63) comprising (real) symmetric hollow matrices is isomorphic with

subspace RM(M−1)/2 ; its orthogonal complement is

RM×M⊥
h ,

{

A∈RM×M | A=−AT+ 2δ2(A)
}

⊆ RM×M (64)
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the subspace of antisymmetric antihollow matrices in RM×M ; id est,

RM×M
h ⊕ RM×M⊥

h = RM×M (65)

Yet defined instead as a proper subspace of ambient SM

SM
h ,

{

A∈ SM | δ(A) = 0
}

≡ RM×M
h ⊂ SM (66)

the orthogonal complement SM⊥
h of symmetric hollow subspace SM

h ,

SM⊥
h ,

{

A∈ SM | A=δ2(A)
}

⊆ SM (67)

called symmetric antihollow subspace, is simply the subspace of diagonal matrices; id est,

SM
h ⊕ SM⊥

h = SM (68)

△

Any matrix A∈RM×M can be written as a sum of its symmetric hollow and
antisymmetric antihollow parts: respectively,

A =

(

1

2
(A +AT) − δ2(A)

)

+

(

1

2
(A −AT) + δ2(A)

)

(69)

The symmetric hollow part is orthogonal to the antisymmetric antihollow part in RM2

;
videlicet,

tr

((

1

2
(A +AT) − δ2(A)

)(

1

2
(A −AT) + δ2(A)

))

= 0 (70)

because any matrix in subspace RM×M
h is orthogonal to any matrix in the antisymmetric

antihollow subspace

RM×M⊥
h =

{

1

2
(A −AT) + δ2(A) | A∈RM×M

}

⊆ RM×M (71)

of the ambient space of real matrices; which reduces to the diagonal matrices in the ambient
space of symmetric matrices

SM⊥
h =

{

δ2(A) | A∈SM
}

=
{

δ(u) | u∈RM
}

⊆ SM (72)

In anticipation of their utility with Euclidean distance matrices (EDMs) in §5, for
symmetric hollow matrices we introduce the linear bijective vectorization dvec that is the
natural analogue to symmetric matrix vectorization svec (56): for Y = [Yij ]∈ SM

h

dvec Y ,
√

2























Y12

Y13

Y23

Y14

Y24

Y34...
YM−1,M























∈ RM(M−1)/2 (73)
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Figure 22: Convex hull of a random list of points in R3. Some points from that
generating list reside interior to this convex polyhedron (§2.12). [412, Convex Polyhedron]
(Avis-Fukuda-Mizukoshi)

Like svec , dvec is an isometric isomorphism on the symmetric hollow subspace. For
X∈ SM

h

‖dvec X − dvec Y ‖2 = ‖X − Y ‖F (74)

The set of all symmetric hollow matrices SM
h forms a proper subspace in RM×M , so

for it there must be a standard orthonormal basis in isometrically isomorphic RM(M−1)/2

{Eij ∈ SM
h } =

{

1√
2

(

eie
T
j + eje

T
i

)

, 1 ≤ i < j ≤ M

}

(75)

where M(M−1)/2 standard basis matrices Eij are formed from the standard basis vectors

ei∈RM .
The symmetric hollow majorization corollary A.1.2.0.2 characterizes eigenvalues of

symmetric hollow matrices.

2.3 Hulls

We focus on the affine, convex, and conic hulls: convex sets that may be regarded as kinds
of Euclidean container or vessel united with its interior.

2.3.1 Affine hull, affine dimension

Affine dimension of any set in Rn is the dimension of the smallest affine set (empty set,
point, line, plane, hyperplane (§2.4.2), translated subspace, Rn) that contains it. For
nonempty sets, affine dimension is the same as dimension of the subspace parallel to that
affine set. [325, §1] [215, §A.2.1]

Ascribe the points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of matrix X :

X = [x1 · · · xN ] ∈ Rn×N (76)

http://mathworld.wolfram.com/ConvexPolyhedron.html
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In particular, we define affine dimension r of the N -point list X as dimension of the
smallest affine set in Euclidean space Rn that contains X ;

r , dim aff X (77)

Affine dimension r is a lower bound sometimes called embedding dimension. [371] [201]
That affine set A in which those points are embedded is unique and called the affine hull
[347, §2.1];

A , aff {xℓ∈Rn, ℓ=1 . . . N} = aff X
= x1 + R{xℓ − x1 , ℓ=2 . . . N} = {Xa | aT1 = 1} ⊆ Rn (78)

for which we call list X a set of generators. Hull A is parallel to subspace

R{xℓ − x1 , ℓ=2 . . . N} = R(X − x11
T) ⊆ Rn (79)

where
R(A) = {Ax | ∀x} (142)

Given some arbitrary set C and any x∈ C

aff C = x + aff(C − x) (80)

where aff(C−x) is a subspace.

aff ∅ , ∅ (81)

The affine hull of a point x is that point itself;

aff{x} = {x} (82)

Affine hull of two distinct points is the unique line through them. (Figure 23) The affine
hull of three noncollinear points in any dimension is that unique plane containing the
points, and so on. The subspace of symmetric matrices Sm is the affine hull of the cone
of positive semidefinite matrices; (§2.9)

aff Sm
+ = Sm (83)

2.3.1.0.1 Example. Affine hull of rank-1 correlation matrices. [234]
The set of all m×m rank-1 correlation matrices is defined by all the binary vectors y in
Rm (confer §5.9.1.0.1)

{yyT∈ Sm
+ | δ(yyT)=1} (84)

Affine hull of the rank-1 correlation matrices is equal to the set of normalized symmetric
matrices; id est,

aff{yyT∈ Sm
+ | δ(yyT)=1} = {A∈ Sm | δ(A)=1} (85)

2
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affine hull (drawn truncated)

convex hull

conic hull (truncated)

range or span is a plane (truncated)

A

C

K

R

Figure 23: Given two points in Euclidean vector space of any dimension, their various hulls
are illustrated. Each hull is a subset of range; generally, A , C , K ⊆ R ∋ 0. (Cartesian
axes drawn for reference.)
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2.3.1.0.2 Exercise. Affine hull of correlation matrices.
Prove (85) via definition of affine hull. Find the convex hull instead. H

2.3.1.1 Partial order induced by RN
+ and SM

+

Notation aº 0 means vector a belongs to nonnegative orthant RN
+ while a≻ 0 means

vector a belongs to the nonnegative orthant’s interior int RN
+ . aº b denotes comparison

of vector a to vector b on RN with respect to the nonnegative orthant; id est, aº b means
a− b belongs to the nonnegative orthant but neither a or b is necessarily nonnegative.
With particular respect to the nonnegative orthant, aº b ⇔ ai ≥ bi ∀ i (369).

More generally, aºK b denotes comparison with respect to pointed closed convex
cone K , whereas comparison with respect to the cone’s interior is denoted a≻K b .
But equivalence with entrywise comparison does not generally hold, and neither a or
b necessarily belongs to K . (§2.7.2.2)

The symbol ≥ is reserved for scalar comparison on the real line R with respect to
the nonnegative real line R+ as in aTy ≥ b . Comparison of matrices with respect to
the positive semidefinite cone SM

+ , like I ºAº 0 in Example 2.3.2.0.1, is explained in
§2.9.0.1.

2.3.2 Convex hull

The convex hull [215, §A.1.4] [325] of any bounded2.15 list or set of N points X∈ Rn×N

forms a unique bounded convex polyhedron (confer §2.12.0.0.1) whose vertices constitute
some subset of that list;

P , conv{xℓ , ℓ=1 . . . N} = conv X = {Xa | aT1 = 1, a º 0} ⊆ Rn (86)

Union of relative interior and relative boundary (§2.1.7.2) of the polyhedron comprise its
convex hull P , the smallest closed convex set that contains the list X ; e.g, Figure 22.
Given P , the generating list {xℓ} is not unique. But because every bounded polyhedron
is the convex hull of its vertices, [347, §2.12.2] the vertices of P comprise a minimal set
of generators.

Given some arbitrary set C⊆Rn, its convex hull conv C is equivalent to the smallest
convex set containing it. (confer §2.4.1.1.1) The convex hull is a subset of the affine hull;

conv C ⊆ aff C = aff C = aff C = aff conv C (87)

Any closed bounded convex set C is equal to the convex hull of its boundary;

C = conv ∂C (88)

conv ∅ , ∅ (89)

2.15An arbitrary set C in R
n is bounded iff it can be contained in a Euclidean ball having finite radius.

[120, §2.2] (confer §5.7.3.0.1) The smallest ball containing C has radius inf
x

sup
y∈C

‖x−y‖ and center x⋆ whose

determination is a convex problem because sup
y∈C

‖x−y‖ is a convex function of x ; but the supremum may

be difficult to ascertain.
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α
√

2β

γ

I

svec ∂ S2

+

[

α β
β γ

]

Figure 24: Two Fantopes. Circle (radius 1/
√

2), shown here on boundary of positive
semidefinite cone S2

+ in isometrically isomorphic R3 from Figure 46, comprises boundary
of a Fantope (90) in this dimension (k = 1, N = 2). Lone point illustrated is Identity matrix
I , interior to PSD cone, and is that Fantope corresponding to k = 2, N = 2. (View is
from inside PSD cone looking toward origin.)
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2.3.2.0.1 Example. Hull of rank-k projection matrices. [155] [304] [12, §4.1]
[310, §3] [255, §2.4] [256] Convex hull of the set comprising outer product of orthonormal
matrices has equivalent expression: for 1 ≤ k ≤ N (§2.9.0.1)

conv
{

UUT | U ∈ RN×k, UTU = I
}

=
{

A∈ SN | I º A º 0 , 〈I , A〉= k
}

⊂ SN
+ (90)

This important convex body we call Fantope (after mathematician Ky Fan). In case k = 1,
there is slight simplification: ((1710), Example 2.9.2.7.1)

conv
{

UUT | U ∈ RN , UTU = 1
}

=
{

A∈ SN | A º 0 , 〈I , A〉=1
}

(91)

This particular Fantope is called spectahedron. [sic ] [163, §5.1] In case k = N , the Fantope
is Identity matrix I . More generally, the set

{

UUT | U ∈ RN×k, UTU = I
}

(92)

comprises the extreme points (§2.6.0.0.1) of its convex hull. By (1552), each and every
extreme point UUT has only k nonzero eigenvalues λ and they all equal 1 ; id est,
λ(UUT)1:k = λ(UTU) = 1. So Frobenius’ norm of each and every extreme point equals
the same constant

‖UUT‖2
F = k (93)

Each extreme point simultaneously lies on the boundary of the positive semidefinite cone
(when k < N , §2.9) and on the boundary of a hypersphere of dimension k(N− k

2 + 1
2 ) and

radius
√

k(1− k
N ) centered at k

N I along the ray (base 0) through the Identity matrix I

in isomorphic vector space RN(N+1)/2 (§2.2.2.1).

Figure 24 illustrates extreme points (92) comprising the boundary of a Fantope, the
boundary of a disc corresponding to k = 1, N = 2 ; but that circumscription does not hold
in higher dimension. (§2.9.2.8) 2

2.3.2.0.2 Example. Nuclear norm ball : convex hull of rank-1 matrices.
From (91), in Example 2.3.2.0.1, we learn that the convex hull of normalized symmetric
rank-1 matrices is a slice of the positive semidefinite cone. In §2.9.2.7 we find the convex
hull of all symmetric rank-1 matrices to be the entire positive semidefinite cone.

In the present example we abandon symmetry; instead posing, what is the convex hull
of bounded nonsymmetric rank-1 matrices:

conv{uvT | ‖uvT‖ ≤ 1 , u∈Rm, v∈Rn} = {X∈ Rm×n |
∑

i

σ(X)i ≤ 1} (94)

where σ(X) is a vector of singular values. (Since ‖uvT‖= ‖u‖‖v‖ (1701), norm of each
vector constituting a dyad uvT (§B.1) in the hull is effectively bounded above by 1.)

https://books.google.com/books?id=5QeLPOvIpNUC&pg=PA76&lpg=PA76&dq=spectahedron+spectrahedron&source=bl&ots=qnwjNXeWnz
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α

√
2β

γ

{

svec X | ‖X‖∗2 ≤ 1
}

X =

[

α β
β γ

]

Figure 25: Nuclear norm is a sum of singular values; ‖X‖∗2 ,
∑

i σ(X)i . Nuclear norm
ball, in the subspace of 2 × 2 symmetric matrices, is a truncated cylinder in isometrically
isomorphic R3.
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xyT
p

−xyT
p

uvT
p

−uvT
p

‖xyT‖=1

‖−xyT‖=1

‖uvT‖=1

‖−uvT‖=1

{X∈ Rm×n | ∑

i

σ(X)i ≤ 1}

‖uvT‖≤1

0

Figure 26: uvT
p is a convex combination of normalized dyads ‖±uvT‖=1 ; similarly for

xyT
p . Any point in line segment joining xyT

p to uvT
p is expressible as a convex combination

of two to four points indicated on boundary.

Proof. (⇐) Suppose
∑

σ(X)i ≤ 1. Decompose X = UΣV T by SVD (§A.6) where

U = [u1 . . . umin{m,n}]∈Rm×min{m,n}, V = [v1 . . . vmin{m,n}]∈Rn×min{m,n}, and whose
sum of singular values is

∑

σ(X)i = tr Σ = κ≤ 1. Then we may write X =
∑ σi

κ

√
κui

√
κvT

i

which is a convex combination of dyads each of whose norm does not exceed 1. (Srebro)

(⇒) Now suppose we are given a convex combination of dyads X =
∑

αi uiv
T
i such

that
∑

αi =1, αi≥ 0 ∀ i , and ‖uiv
T
i ‖≤ 1 ∀ i . Then by triangle inequality for singular

values [219, cor.3.4.3]
∑

σ(X)i ≤
∑

σ(αi uiv
T
i )=

∑

αi‖uiv
T
i ‖≤

∑

αi . ¨

Given any particular dyad uvT
p in the convex hull, because its polar −uvT

p and every
convex combination of the two belong to that hull, then the unique line containing those
two points ±uvT

p (their affine combination (78)) must intersect the hull’s boundary at

the normalized dyads {±uvT | ‖uvT‖=1}. Any point formed by convex combination of
dyads in the hull must therefore be expressible as a convex combination of dyads on the
boundary: Figure 26,

conv{uvT | ‖uvT‖ ≤ 1 , u∈Rm, v∈Rn} ≡ conv{uvT | ‖uvT‖ = 1 , u∈Rm, v∈Rn} (95)

id est, dyads may be normalized and the hull’s boundary contains them;

∂{X∈ Rm×n | ∑

i

σ(X)i ≤ 1} = {X∈ Rm×n | ∑

i

σ(X)i = 1}
⊇ {uvT | ‖uvT‖ = 1 , u∈Rm, v∈Rn}

(96)

Normalized dyads constitute the set of extreme points (§2.6.0.0.1) of this nuclear norm
ball (confer Figure 25) which is, therefore, their convex hull. 2
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2.3.2.0.3 Exercise. Convex hull of outer product.
Describe the interior of a Fantope.
Find the convex hull of nonorthogonal projection matrices (§E.1.1):

{UV T | U ∈ RN×k, V ∈ RN×k, V TU = I} (97)

Find the convex hull of nonsymmetric matrices bounded under some norm:

{UV T | U ∈ Rm×k, V ∈ Rn×k, ‖UV T‖ ≤ 1} (98)

H

2.3.2.0.4 Example. Permutation polyhedron. [217] [335] [277]
A permutation matrix Ξ is formed by interchanging rows and columns of Identity matrix
I . Since Ξ is square and ΞTΞ = I , the set of all permutation matrices is a proper subset
of the nonconvex manifold of orthogonal matrices (§B.5). In fact, the only orthogonal
matrices having all nonnegative entries are permutations of the Identity:

Ξ−1 = ΞT, Ξ ≥ 0 (99)

And the only positive semidefinite permutation matrix is the Identity. [350, §6.5 prob.20]
Regarding the permutation matrices as a set of points in Euclidean space, its convex

hull is a bounded polyhedron (§2.12) described (Birkhoff, 1946)

conv{Ξ = Πi(I∈ Sn)∈Rn×n, i=1 . . . n!} = {X∈ Rn×n | XT1=1, X1=1, X≥ 0} (100)

where Πi is a linear operator here representing the ith permutation. This polyhedral
hull, whose n! vertices are the permutation matrices, is also known as the set of doubly
stochastic matrices. The permutation matrices are the minimal cardinality (fewest nonzero
entries) doubly stochastic matrices. The only orthogonal matrices belonging to this
polyhedron are the permutation matrices.

It is remarkable that n! permutation matrices can be described as the extreme points
(§2.6.0.0.1) of a bounded polyhedron, of affine dimension (n−1)2, that is itself described
by 2n equalities (2n−1 linearly independent equality constraints in n2 nonnegative
variables). By Carathéodory’s theorem, conversely, any doubly stochastic matrix can
be described as a convex combination of at most (n−1)2+1 permutation matrices.
[218, §8.7] [56, thm.1.2.5] This polyhedron, then, can be a device for relaxing an integer,
combinatorial, or Boolean optimization problem.2.16 [69] [300, §3.1] 2

2.3.2.0.5 Example. Convex hull of orthonormal matrices. [28, §1.2]
Consider rank-k matrices U ∈ Rn×k such that UTU = I . These are the orthonormal
matrices; a closed bounded submanifold, of all orthogonal matrices, having dimension
nk − 1

2k(k + 1) [53]. Their convex hull is expressed, for 1 ≤ k ≤ n

conv{U ∈ Rn×k | UTU = I} = {X∈ Rn×k | ‖X‖2 ≤ 1}
= {X∈ Rn×k | ‖XTa‖ ≤ ‖a‖ ∀ a∈Rn} (101)

2.16Relaxation replaces an objective function with its convex envelope or expands a feasible set to one
that is convex. Dantzig first showed in 1951 that, by this device, the so-called assignment problem can
be formulated as a linear program. [334] [27, §II.5]
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By Schur complement (§A.4), the spectral norm ‖X‖2 constraining largest singular
value σ(X)1 can be expressed as a semidefinite constraint

‖X‖2 ≤ 1 ⇔
[

I X
XT I

]

º 0 (102)

because of equivalence XTX¹ I ⇔ σ(X) ¹ 1 with singular values. (1655) (1539) (1540)

When k=n , matrices U are orthogonal and their convex hull is called the spectral
norm ball which is the set of all contractions. [219, p.158] [346, p.313] The orthogonal
matrices then constitute the extreme points (§2.6.0.0.1) of this hull. Hull intersection with
the nonnegative orthant Rn×n

+ contains the permutation polyhedron (100). 2

2.3.3 Conic hull

In terms of a finite-length point list (or set) arranged columnar in X∈ Rn×N (76), its conic
hull is expressed

K , cone {xℓ , ℓ=1 . . . N} = cone X = {Xa | a º 0} ⊆ Rn (103)

id est, every nonnegative combination of points from the list. Conic hull of any finite-length
list forms a polyhedral cone [215, §A.4.3] (§2.12.1.0.1; e.g, Figure 53a); the smallest closed
convex cone (§2.7.2) that contains the list.

By convention, the aberration [347, §2.1]

cone ∅ , {0} (104)

Given some arbitrary set C , it is apparent

conv C ⊆ cone C (105)

2.3.4 Vertex-description

The conditions in (78), (86), and (103) respectively define an affine combination, convex
combination, and conic combination of elements from the set or list. Whenever a Euclidean
body can be described as some hull or span of a set of points, then that representation is
loosely called a vertex-description and those points are called generators.

2.4 Halfspace, Hyperplane

A two-dimensional affine subset is called a plane. An (n−1)-dimensional affine subset of
Rn is called a hyperplane. [325] [215] Every hyperplane partially bounds a halfspace (which
is convex, but not affine, and the only nonempty convex set in Rn whose complement is
convex and nonempty).
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Figure 27: A simplicial cone (§2.12.3.1.1) in R3 whose boundary is drawn truncated;
constructed using A∈R3×3 and C = 0 in (286). By the most fundamental definition of
a cone (§2.7.1), entire boundary can be constructed from an aggregate of rays emanating
exclusively from the origin. Each of three extreme directions corresponds to an edge
(§2.6.0.0.3); they are conically, affinely, and linearly independent for this cone. Because
this set is polyhedral, exposed directions are in one-to-one correspondence with extreme
directions; there are only three. Its extreme directions give rise to what is called a
vertex-description of this polyhedral cone; simply, the conic hull of extreme directions.
Obviously this cone can also be constructed by intersection of three halfspaces; hence the
equivalent halfspace-description.
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∆

∂H = {y | aT(y − yp)=0} = N (aT) + yp

N (aT)={y | aTy=0}

c

dy

yp

a

H+ = {y | aT(y − yp)≥ 0}

H−= {y | aT(y − yp)≤ 0}

Figure 28: Hyperplane illustrated ∂H is a line partially bounding halfspaces H− and
H+ in R2. Shaded is a rectangular piece of semiinfinite H− with respect to which vector
a is outward-normal to bounding hyperplane; vector a is inward-normal with respect
to H+ . Halfspace H− contains nullspace N (aT) (dashed line through origin) because
aTyp > 0. Hyperplane, halfspace, and nullspace are each drawn truncated. Points c and
d are equidistant from hyperplane, and vector c−d is normal to it. ∆ is distance from
origin to hyperplane.
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2.4.1 Halfspaces H+ and H−

Euclidean space Rn is partitioned in two by any hyperplane ∂H ; id est, H− + H+ = Rn.
The resulting (closed convex) halfspaces, both partially bounded by ∂H , may be described

H− = {y | aTy ≤ b} = {y | aT(y − yp) ≤ 0} ⊂ Rn (106)

H+ = {y | aTy ≥ b} = {y | aT(y − yp) ≥ 0} ⊂ Rn (107)

where nonzero vector a∈Rn is an outward-normal to the hyperplane partially bounding
H− while an inward-normal with respect to H+ . For any vector y−yp that makes an
obtuse angle with normal a , vector y will lie in the halfspace H− on one side (shaded
in Figure 28) of the hyperplane while acute angles denote y in H+ on the other side.

An equivalent more intuitive representation of a halfspace comes about when we
consider all the points in Rn closer to point d than to point c or equidistant, in the
Euclidean sense; from Figure 28,

H− = {y | ‖y − d‖ ≤ ‖y − c‖} (108)

This representation, in terms of proximity, is resolved with the more conventional
representation of a halfspace (106) by squaring both sides of the inequality in (108);

H− =

{

y | (c − d)Ty ≤ ‖c‖2 − ‖d‖2

2

}

=

{

y | (c − d)T
(

y − c + d

2

)

≤ 0

}

(109)

2.4.1.1 PRINCIPLE 1: Halfspace-description of convex sets

The most fundamental principle in convex geometry follows from the geometric
Hahn-Banach theorem [266, §5.12] [19, §1] [143, §I.1.2] which guarantees any closed convex
set to be an intersection of halfspaces.

2.4.1.1.1 Theorem. Halfspaces. [215, §A.4.2b] [43, §2.4]
A closed convex set in Rn is equivalent to the intersection of all halfspaces that contain
it. ⋄

Intersection of multiple halfspaces in Rn may be represented using a matrix constant A

⋂

i

Hi− = {y | ATy ¹ b} = {y | AT(y − yp) ¹ 0} (110)

⋂

i

Hi+ = {y | ATy º b} = {y | AT(y − yp) º 0} (111)

where b is now a vector, and the ith column of A is normal to a hyperplane ∂Hi
partially bounding Hi . By the halfspaces theorem, intersections like this can describe
interesting convex Euclidean bodies such as polyhedra and cones, giving rise to the term
halfspace-description.
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1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

a =

[

1
1

]

b =

[

−1
−1

]

c =

[

−1
1

]

d =

[

1
−1

]

e =

[

1
0

]

{y | aTy=1}

{y | aTy=−1}

{y | bTy=−1}

{y | bTy=1}

{y | cTy=1}

{y | cTy=−1}

{y | dTy=−1}

{y | dTy=1}

{y | eTy=−1} {y | eTy=1}

(a) (b)

(c) (d)

(e)

Figure 29: (a)-(d) Hyperplanes in R2 (truncated) redundantly emphasize: hyperplane
movement opposite to its normal direction minimizes vector inner-product. This concept
is exploited to attain analytical solution of linear programs by visual inspection; e.g,
§2.4.2.6.2, §2.5.1.2.2, §3.4.0.0.2, [63, exer.4.8-exer.4.20]. Each graph is also interpretable
as contour plot of a real affine function of two variables as in Figure 77. (e) |β|/‖α‖ from
∂H={x | αTx = β} represents radius of hypersphere about 0 supported by any hyperplane
with same ratio |inner product|/norm.
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2.4.2 Hyperplane ∂H representations

Every hyperplane ∂H is an affine set parallel to an (n−1)-dimensional subspace of Rn ;
it is itself a subspace if and only if it contains the origin.

dim ∂H = n − 1 (112)

so a hyperplane is a point in R , a line in R2, a plane in R3, and so on. Every hyperplane
can be described as the intersection of complementary halfspaces; [325, §19]

∂H = H− ∩ H+ = {y | aTy ≤ b , aTy ≥ b} = {y | aTy = b} (113)

a halfspace-description. Assuming normal a∈Rn to be nonzero, then any hyperplane in
Rn can be described as the solution set to vector equation aTy = b (illustrated in Figure 28
and Figure 29 for R2 );

∂H , {y | aTy = b} = {y | aT(y − yp) = 0} = {Z ξ + yp | ξ∈Rn−1} ⊂ Rn (114)

All solutions y constituting the hyperplane are offset from the nullspace of aT by the same
constant vector yp∈ Rn that is any particular solution to aTy=b ; id est,

y = Z ξ + yp (115)

where the columns of Z∈Rn×n−1 constitute a basis for N (aT)={x∈Rn | aTx=0} the
nullspace.2.17

Conversely, given any point yp in Rn, the unique hyperplane containing it having
normal a is the affine set ∂H (114) where b equals aTyp and where a basis for N (aT) is
arranged in Z columnar. Hyperplane dimension is apparent from dimension of Z ; that
hyperplane is parallel to the span of its columns.

2.4.2.0.1 Exercise. Hyperplane scaling.
Given normal y , draw a hyperplane {x∈R2 | xTy =1}. Suppose z = 1

2y . On the same

plot, draw the hyperplane {x∈R2 | xTz =1}. Now suppose z = 2y , then draw the last
hyperplane again with this new z . What is the apparent effect of scaling normal y ?

H

2.4.2.0.2 Example. Distance from origin to hyperplane.
Given the (shortest) distance ∆∈R+ from the origin to a hyperplane having normal
vector a , we can find its representation ∂H by dropping a perpendicular. The point
thus found is the orthogonal projection of the origin on ∂H (§E.5.0.0.5), equal to a∆/‖a‖
if the origin is known a priori to belong to halfspace H− (Figure 28), or equal to −a∆/‖a‖
if the origin belongs to halfspace H+ ; id est, when H−∋0

∂H =
{

y | aT(y − a∆/‖a‖) = 0
}

=
{

y | aTy = ‖a‖∆
}

(116)

2.17We will find this expression for y in terms of nullspace of aT (more generally, of matrix A (143)) to
be a useful trick (a practical device) for eliminating affine equality constraints, much as we did here.
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or when H+∋0

∂H =
{

y | aT(y + a∆/‖a‖) = 0
}

=
{

y | aTy = −‖a‖∆
}

(117)

Knowledge of only distance ∆ and normal a thus introduces ambiguity into the
hyperplane representation. 2

2.4.2.1 Matrix variable

Any halfspace in Rmn may be represented using a matrix variable. For variable Y ∈ Rm×n,
given constants A∈Rm×n and b = 〈A , Yp〉 ∈ R

H− = {Y ∈Rmn | 〈A , Y 〉 ≤ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≤ 0} (118)

H+ = {Y ∈Rmn | 〈A , Y 〉 ≥ b} = {Y ∈Rmn | 〈A , Y −Yp〉 ≥ 0} (119)

Recall vector inner-product from §2.2: 〈A , Y 〉= tr(ATY )= vec(A)Tvec(Y ).
Hyperplanes in Rmn may, of course, also be represented using matrix variables.

∂H = {Y | 〈A , Y 〉 = b} = {Y | 〈A , Y −Yp〉 = 0} ⊂ Rmn (120)

Vector a from Figure 28 is normal to the hyperplane illustrated. Likewise, nonzero
vectorized matrix A is normal to hyperplane ∂H ;

A ⊥ ∂H in Rmn (121)

2.4.2.2 Vertex-description of hyperplane

Any hyperplane in Rn may be described as affine hull of a minimal set of points
{xℓ ∈Rn, ℓ = 1 . . . n} arranged columnar in a matrix X∈ Rn×n : (78)

∂H = aff{xℓ ∈Rn, ℓ = 1 . . . n} , dim aff{xℓ ∀ ℓ}=n−1

= aff X , dim aff X = n−1

= x1 + R{xℓ − x1 , ℓ=2 . . . n} , dimR{xℓ − x1 , ℓ=2 . . . n}=n−1

= x1 + R(X − x11
T) , dimR(X − x11

T) = n−1

(122)

where

R(A) = {Ax | ∀x} (142)

2.4.2.3 Affine independence, minimal set

For any particular affine set, a minimal set of points constituting its vertex-description is
an affinely independent generating set and vice versa.

Arbitrary given points {xi∈Rn, i=1 . . . N} are affinely independent (a.i.) if and only
if, over all ζ∈RN Ä ζT1=1, ζk = 0∈R (confer §2.1.2)

xi ζi + · · · + xj ζj − xk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (123)
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A1

A2
A3

0

Figure 30: Of three points illustrated, any one particular point does not belong to affine
hull Ai (i∈ 1, 2 , 3, each drawn truncated) of points remaining. Three corresponding
vectors in R2 are, therefore, affinely independent (but neither linearly or conically
independent).

has no solution ζ ; in words, iff no point from the given set can be expressed as an affine
combination of those remaining. We deduce

l.i. ⇒ a.i. (124)

Consequently, {xi , i=1 . . . N} is an affinely independent set if and only if
{xi−x1 , i=2 . . . N} is a linearly independent (l.i.) set. [221, §3] (Figure 30) This is

equivalent to the property that the columns of

[

X
1T

]

(for X∈ Rn×N as in (76)) form a

linearly independent set. [215, §A.1.3]
Two nontrivial affine subsets are affinely independent iff their intersection is empty {∅}

or, analogously to subspaces, they intersect only at a point.

2.4.2.4 Preservation of affine independence

Independence in the linear (§2.1.2.1), affine, and conic (§2.10.1) senses can be preserved
under linear transformation. Suppose a matrix X∈ Rn×N (76) holds an affinely
independent set in its columns. Consider a transformation on the domain of such matrices

T (X) : Rn×N → Rn×N , XY (125)

where fixed matrix Y , [ y1 y2 · · · yN ]∈RN×N represents linear operator T . Affine
independence of {Xyi∈Rn, i=1 . . . N} demands (by definition (123)) there exist no
solution ζ∈RN Ä ζT1=1, ζk = 0, to

Xyi ζi + · · · + Xyj ζj − Xyk = 0 , i 6= · · · 6=j 6=k = 1 . . . N (126)
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C

a

{z∈R2 | aTz = κ1}

{z∈R2 | aTz = κ2}

{z∈R2 | aTz = κ3}

H−

H+

0 > κ3 > κ2 > κ1

Figure 31: (confer Figure 77) Each linear contour, of equal inner product in vector z
with normal a , represents ith hyperplane in R2 parametrized by scalar κi . Inner
product κi increases in direction of normal a . In convex set C⊂R2, ith line segment
{z∈ C | aTz = κi} represents intersection with hyperplane. (Cartesian axes for reference.)

By factoring out X , we see that is ensured by affine independence of {yi∈RN} and by
R(Y )∩ N (X) = 0 where

N (A) = {x | Ax=0} (143)

2.4.2.5 Affine maps

Affine transformations preserve affine hulls. Given any affine mapping T of vector spaces
and some arbitrary set C [325, p.8]

aff(T C) = T (aff C) (127)

2.4.2.6 PRINCIPLE 2: Supporting hyperplane

The second most fundamental principle of convex geometry also follows from the geometric
Hahn-Banach theorem [266, §5.12] [19, §1] that guarantees existence of at least one
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yp

yp

Y

Y

∂H−

∂H+

(a)

(b)

a

ã

tradition

nontraditional

H+

H−

H+

H−

Figure 32: (a) Hyperplane ∂H− (128) supporting closed set Y⊂R2. Vector a
is inward-normal to hyperplane with respect to halfspace H+ , but outward-normal
with respect to set Y . A supporting hyperplane can be considered the limit of an
increasing sequence in the normal-direction like that in Figure 31. (b) Hyperplane ∂H+

nontraditionally supporting Y . Vector ã is inward-normal to hyperplane now with
respect to both halfspace H+ and set Y . Tradition [215] [325] recognizes only positive
normal polarity in support function σY as in (129); id est, normal a , figure (a). But
both interpretations of supporting hyperplane are useful.
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hyperplane in Rn supporting a full-dimensional convex set2.18 at each point on its
boundary.

The partial boundary ∂H of a halfspace that contains arbitrary set Y is called a
supporting hyperplane ∂H to Y when the hyperplane contains at least one point of Y .
[325, §11]

2.4.2.6.1 Definition. Supporting hyperplane ∂H .
Assuming set Y and some normal a 6=0 reside in opposite halfspaces2.19 (Figure 32a),
then a hyperplane supporting Y at point yp∈ ∂Y is described

∂H− =
{

y | aT(y − yp) = 0 , yp∈ Y , aT(z − yp)≤ 0 ∀ z∈Y
}

(128)

Given only normal a , the hyperplane supporting Y is equivalently described

∂H− =
{

y | aTy = sup{aTz | z∈Y}
}

(129)

where real function

σY(a) = sup{aTz | z∈Y} (554)

is called the support function for Y .
Another equivalent but nontraditional representation2.20 for a supporting hyperplane

is obtained by reversing polarity of normal a ; (1772)

∂H+ =
{

y | ãT(y − yp) = 0 , yp∈ Y , ãT(z − yp)≥ 0 ∀ z∈Y
}

=
{

y | ãTy = − inf{ãTz | z∈Y} = sup{−ãTz | z∈Y}
} (130)

where normal ã and set Y both now reside in H+ (Figure 32b).
When a supporting hyperplane contains only a single point of Y , that hyperplane is

termed strictly supporting.2.21 △

A full-dimensional set that has a supporting hyperplane at every point on its boundary,
conversely, is convex. A convex set C⊂Rn, for example, can be expressed as the
intersection of all halfspaces partially bounded by hyperplanes supporting it; videlicet,
[266, p.135]

C =
⋂

a∈R
n

{

y | aTy ≤ σC(a)
}

(131)

by the halfspaces theorem (§2.4.1.1.1).
There is no geometric difference between supporting hyperplane ∂H+ or ∂H− or ∂H

and2.22 an ordinary hyperplane ∂H coincident with them.

2.18It is customary to speak of a hyperplane supporting set C but not containing C ; called nontrivial
support. [325, p.100] Hyperplanes in support of lower-dimensional bodies are admitted.
2.19Normal a belongs to H+ by definition.
2.20 useful for constructing the dual cone; e.g, Figure 59b. Tradition would instead have us construct the
polar cone; which is, the negative dual cone.
2.21Rockafellar terms a strictly supporting hyperplane tangent to Y if it is unique there; [325, §18, p.169] a
definition we do not adopt because our only criterion for tangency is intersection exclusively with a relative
boundary. Hiriart-Urruty & Lemaréchal [215, p.44] (confer [325, p.100]) do not demand any tangency of
a supporting hyperplane.
2.22If vector-normal polarity is unimportant, we may instead signify a supporting hyperplane by ∂H .

http://www.convexoptimization.com/wikimization/index.php/Rockafellar
http://www.convexoptimization.com/wikimization/index.php/Hiriart-Urruty
http://www.convexoptimization.com/wikimization/index.php/Lemar%C3%A9chal
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2.4.2.6.2 Example. Minimization over hypercube.
Consider minimization of a linear function over a hypercube, given vector c

minimize
x

cTx

subject to −1 ¹ x ¹ 1
(132)

This convex optimization problem is called a linear program2.23 because the objective2.24

of minimization cTx is a linear function of variable x and the constraints describe a
polyhedron (intersection of a finite number of halfspaces and hyperplanes).

Any vector x satisfying the constraints is called a feasible solution. Applying graphical
concepts from Figure 29, Figure 31, and Figure 32, x⋆ =− sgn(c) is an optimal solution
to this minimization problem but is not necessarily unique. It generally holds for
optimization problem solutions:

optimal ⇒ feasible (133)

Because an optimal solution always exists at a hypercube vertex (§2.6.1.0.1) regardless of
value of nonzero vector c in (132) [98, p.158] [16, p.2], mathematicians see this geometry
as a means to relax a discrete problem (whose desired solution is integer or combinatorial,
confer Example 4.2.3.1.1). [255, §3.1] [256] 2

2.4.2.6.3 Exercise. Unbounded below.
Suppose instead we minimize over the unit hypersphere in Example 2.4.2.6.2; ‖x‖≤ 1.
What is an expression for optimal solution now? Is that program still linear?

Now suppose minimization of absolute value in (132). Are the following programs
equivalent for some arbitrary real convex set C ? (confer (516))

minimize
x∈R

|x|
subject to −1 ≤ x ≤ 1

x ∈ C
≡

minimize
α , β

α + β

subject to 1 ≥ β ≥ 0

1 ≥ α ≥ 0

α − β ∈ C

(134)

Many optimization problems of interest and some methods of solution require
nonnegative variables. The method illustrated below splits a variable into parts; x = α − β
(extensible to vectors). Under what conditions on vector a and scalar b is an optimal
solution x⋆ negative infinity?

minimize
α∈R , β∈R

α − β

subject to β ≥ 0

α ≥ 0

aT

[

α
β

]

= b

(135)

Minimization of the objective function entails maximization of β . H

2.23The term program has its roots in economics. It was originally meant with regard to a plan or to
efficient organization or systematization of some industrial process. [98, §2]
2.24The objective is the function that is argument to minimization or maximization.
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2.4.2.7 PRINCIPLE 3: Separating hyperplane

The third most fundamental principle of convex geometry again follows from the geometric
Hahn-Banach theorem [266, §5.12] [19, §1] [143, §I.1.2] that guarantees existence of a
hyperplane separating two nonempty convex sets in Rn whose relative interiors are
nonintersecting. Separation intuitively means each set belongs to a halfspace on an
opposing side of the hyperplane. There are two cases of interest:

1) If the two sets intersect only at their relative boundaries (§2.1.7.2), then there exists
a separating hyperplane ∂H containing the intersection but containing no points
relatively interior to either set. If at least one of the two sets is open, conversely,
then the existence of a separating hyperplane implies the two sets are nonintersecting.
[63, §2.5.1]

2) A strictly separating hyperplane ∂H intersects the closure of neither set; its existence
is guaranteed when intersection of the closures is empty and at least one set is
bounded. [215, §A.4.1]

2.4.3 Angle between hyperspaces

Given halfspace-descriptions, dihedral angle between hyperplanes or halfspaces is defined
as the angle between their defining normals. Given normals a and b respectively
describing ∂Ha and ∂Hb , for example

Á(∂Ha , ∂Hb) , arccos

( 〈a , b〉
‖a‖ ‖b‖

)

radians (136)

2.5 Subspace representations

There are two common forms of expression for Euclidean subspaces, both coming
from elementary linear algebra: range form R and nullspace form N ; a.k.a,

vertex-description and halfspace-description respectively.
The fundamental vector subspaces associated with a matrix A∈Rm×n [348, §3.1] are

ordinarily related by orthogonal complement

R(AT) ⊥ N (A) , N (AT) ⊥ R(A) (137)

R(AT) ⊕ N (A) = Rn , N (AT) ⊕ R(A) = Rm (138)

and of dimension:

dimR(AT) = dimR(A) = rankA ≤ min{m ,n} (139)

with complementarity (a.k.a conservation of dimension)

dimN (A) = n − rankA , dimN (AT) = m − rankA (140)

These equations (137)-(140) comprise the fundamental theorem of linear algebra.
[348, p.95, p.138]
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From these four fundamental subspaces, the rowspace and range identify one form of
subspace description (vertex-description (§2.3.4) or range form)

R(AT) , spanAT = {ATy | y∈Rm} = {x∈Rn | ATy=x , y∈R(A)} (141)

R(A) , spanA = {Ax | x∈Rn} = {y∈Rm | Ax=y , x∈R(AT)} (142)

while the nullspaces identify the second common form (halfspace-description (113) or
nullspace form)

N (A) , {x∈Rn | Ax=0} = {x∈Rn | x ⊥ R(AT)} (143)

N (AT) , {y∈Rm | ATy=0} = {y∈Rm | y ⊥ R(A)} (144)

Range forms (141) (142) are realized as the respective span of the column vectors in
matrices AT and A , whereas nullspace form (143) or (144) is the solution set to a
linear equation similar to hyperplane definition (114). Yet because matrix A generally
has multiple rows, halfspace-description N (A) is actually the intersection of as many
hyperplanes through the origin; for (143), each row of A is normal to a hyperplane while
each row of AT is a normal for (144).

2.5.0.0.1 Exercise. Subspace algebra.
Given

R(A) + N (AT) = R(B) + N (BT) = Rm (145)
prove

R(A) ⊇ N (BT) ⇔ N (AT) ⊆ R(B) (146)

R(A) ⊇ R(B) ⇔ N (AT) ⊆ N (BT) (147)

e.g, Theorem A.3.1.0.6. H

2.5.1 Subspace or affine subset. . .

Any particular vector subspace Rp can be described as nullspace N (A) of some matrix A
or as range R(B) of some matrix B .

More generally, we have the choice of expressing an n−m-dimensional affine subset
of Rn as the intersection of m hyperplanes, or as the offset span of n−m vectors:

2.5.1.1 . . . as hyperplane intersection

Any affine subset A of dimension n − m can be described as an intersection of m
hyperplanes in Rn ; given fat (m≤n) full-rank (rank = min{m, n}) matrix

A ,





aT
1
...

aT
m



∈ Rm×n (148)

and vector b∈Rm,

A , {x∈Rn | Ax= b} =

m
⋂

i=1

{

x | aT
i x= bi

}

(149)
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a halfspace-description. (113)
For example: The intersection of any two independent2.25 hyperplanes in R3 is a line,

whereas three independent hyperplanes intersect at a point. In R4, the intersection of
two independent hyperplanes is a plane (Example 2.5.1.2.1), whereas three hyperplanes
intersect at a line, four at a point, and so on. A describes a subspace whenever b = 0 in
(149).

For n>k

A ∩ Rk = {x∈Rn | Ax= b} ∩ Rk =

m
⋂

i=1

{

x∈Rk | ai(1 : k)Tx= bi

}

(150)

The result in §2.4.2.2 is extensible; id est, any affine subset A also has a
vertex-description:

2.5.1.2 . . . as span of nullspace basis

Alternatively, we may compute a basis for nullspace of matrix A (§E.3.1) and then
equivalently express affine subset A as its span plus an offset: Define

Z , basisN (A)∈Rn×n−rank A (151)

so AZ = 0. Then we have a vertex-description in Z ,

A = {x∈Rn | Ax = b} =
{

Zξ + xp | ξ∈Rn−rank A
}

⊆ Rn (152)

the offset span of n− rankA column vectors, where xp is any particular solution to
Ax = b ; e.g, A describes a subspace whenever xp = 0.

2.5.1.2.1 Example. Intersecting planes in 4-space.
Two planes can intersect at a point in four-dimensional Euclidean vector space. It is easy
to visualize intersection of two planes in three dimensions; a line can be formed. In four
dimensions it is harder to visualize. So let’s resort to the tools acquired.

Suppose an intersection of two hyperplanes in four dimensions is specified by a fat
full-rank matrix A1∈ R2×4 (m = 2, n = 4) as in (149):

A1 ,

{

x∈R4

∣

∣

∣

∣

[

a11 a12 a13 a14

a21 a22 a23 a24

]

x = b1

}

(153)

The nullspace of A1 is two dimensional (from Z in (152)), so A1 represents a plane in
four dimensions. Similarly define a second plane in terms of A2∈ R2×4 :

A2 ,

{

x∈R4

∣

∣

∣

∣

[

a31 a32 a33 a34

a41 a42 a43 a44

]

x = b2

}

(154)

2.25Any number of hyperplanes are called independent when defining normals are linearly independent.
This misuse departs from independence of two affine subsets that demands intersection only at a point or
not at all. (§2.1.4.0.1)
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If the two planes are affinely independent and intersect, they intersect at a point because
[

A1

A2

]

is invertible;

A1 ∩ A2 =

{

x∈R4

∣

∣

∣

∣

[

A1

A2

]

x =

[

b1

b2

]}

(155)

2

2.5.1.2.2 Exercise. Linear program.
Minimize a hyperplane over affine set A in the nonnegative orthant

minimize
x

cTx

subject to Ax = b
x º 0

(156)

where A = {x | Ax = b}. Two cases of interest are drawn in Figure 33. Graphically
illustrate and explain optimal solutions indicated in the caption. Why is α⋆ negative in
both cases? Is there solution on the vertical axis? What causes objective unboundedness
in the latter case (b)? Describe all vectors c that would yield finite optimal objective
in (b).

Graphical solution to linear program

maximize
x

cTx

subject to x ∈ P (157)

is illustrated in Figure 34. Bounded set P is an intersection of many halfspaces. Why is
optimal solution x⋆ not aligned with vector c as in Cauchy-Schwarz inequality (2172)?

H

2.5.2 Intersection of subspaces

The intersection of nullspaces associated with two matrices A∈Rm×n and B∈Rk×n can
be expressed most simply as

N (A) ∩ N (B) = N
([

A
B

])

, {x∈Rn |
[

A
B

]

x = 0} (158)

nullspace of their rowwise concatenation.
Suppose the columns of a matrix Z constitute a basis for N (A) while the columns of

a matrix W constitute a basis for N (BZ ). Then [174, §12.4.2]

N (A) ∩ N (B) = R(ZW ) (159)

If each basis is orthonormal, then the columns of ZW constitute an orthonormal basis for
the intersection.

In the particular circumstance A and B are each positive semidefinite [22, §6], or in
the circumstance A and B are two linearly independent dyads (§B.1.1), then

N (A) ∩ N (B) = N (A + B) ,







A,B∈ SM
+

or
A + B = u1v

T
1 + u2v

T
2 (l.i.)

(160)
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(a)

(b)

A = {x |Ax = b}

A = {x |Ax = b}

{x | cTx = α}

{x | cTx = α}

c

c

Figure 33: Minimizing hyperplane over affine set A in nonnegative orthant R2

+ whose
extreme directions (§2.8.1) are the nonnegative Cartesian axes. Solutions are visually
ascertainable: (a) Optimal solution is • . (b) Optimal objective α⋆ =−∞.
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x⋆

c
P

∂H

Figure 34: Maximizing hyperplane ∂H , whose normal is vector c∈P , over polyhedral
set P in R2 is a linear program (157). Optimal solution x⋆ at • .

2.5.3 Visualization of matrix subspaces

Fundamental subspace relations, such as

R(AT) ⊥ N (A) , N (AT) ⊥ R(A) (137)

are partially defining. But to aid visualization of involved geometry, it sometimes helps
to vectorize matrices. For any square matrix A , s∈N (A) , and w∈N (AT)

〈A , ssT〉 = 0 , 〈A , wwT〉 = 0 (161)

because sTA s = wTA w = 0. This innocuous observation becomes a sharp instrument for
visualization of diagonalizable matrices (§A.5.1): for rank-ρ matrix A∈RM×M

A = SΛS−1 = [ s1 · · · sM ] Λ





wT
1
...

wT
M



 =

M
∑

i=1

λi siw
T
i (1636)

where nullspace eigenvectors are real by Theorem A.5.0.0.1 and where (§B.1.1)

R{si∈ RM |λi =0} = R
(

M
∑

i=ρ+1

sis
T
i

)

= N (A)

R{wi∈ RM |λi =0} = R
(

M
∑

i=ρ+1

wiw
T
i

)

= N (AT)

(162)
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Define an unconventional basis among column vectors of each summation:

basisN (A) ⊆
M
∑

i=ρ+1

sis
T
i ⊆ N (A)

basisN (AT) ⊆
M
∑

i=ρ+1

wiw
T
i ⊆ N (AT)

(163)

We shall regard a vectorized subspace as vectorization of any M×M matrix whose columns
comprise an overcomplete basis for that subspace; e.g, §E.3.1

vec basisN (A) = vec
M
∑

i=ρ+1

sis
T
i

vec basisN (AT) = vec
M
∑

i=ρ+1

wiw
T
i

(164)

By this reckoning, vec basisR(A)= vec A but is not unique. Now, because

〈

A ,

M
∑

i=ρ+1

sis
T
i

〉

= 0 ,

〈

A ,

M
∑

i=ρ+1

wiw
T
i

〉

= 0 (165)

then vectorized matrix A is normal to a hyperplane (of dimension M 2−1) that contains
both vectorized nullspaces (each of whose dimension is M−ρ);

vec A ⊥ vec basisN (A) , vec basisN (AT) ⊥ vec A (166)

These vectorized subspace orthogonality relations represent a departure (absent T) from
fundamental subspace relations (137) stated at the outset.

2.6 Extreme, Exposed

2.6.0.0.1 Definition. Extreme point.
An extreme point xε of a convex set C is a point, belonging to its closure C [43, §3.3],
that is not expressible as a convex combination of points in C distinct from xε ; id est,
for xε∈ C and all x1 , x2∈ C \xε

µx1 + (1 − µ)x2 6= xε , µ ∈ [0, 1] (167)

△

In other words, xε is an extreme point of C if and only if xε is not a point relatively
interior to any line segment in C . [377, §2.10]

Borwein & Lewis offer: [56, §4.1.6] An extreme point of a convex set C is a point xε

in C whose relative complement C \xε is convex.
The set consisting of a single point C={xε} is itself an extreme point.

2.6.0.0.2 Theorem. Extreme existence. [325, §18.5.3] [27, §II.3.5]
A nonempty closed convex set containing no lines has at least one extreme point. ⋄
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2.6.0.0.3 Definition. Face, edge. [215, §A.2.3]

� A face F of convex set C is a convex subset F⊆C such that every closed line
segment x1x2 in C , having a relatively interior point (x∈ rel int x1x2) in F , has
both endpoints in F . The zero-dimensional faces of C constitute its extreme points.
The empty set ∅ and C itself are conventional faces of C . [325, §18]

� All faces F are extreme sets by definition; id est, for F⊆C and all x1 , x2∈ C\F

µx1 + (1 − µ)x2 /∈ F , µ ∈ [0, 1] (168)

� A one-dimensional face of a convex set is called an edge. △

Dimension of a face is the penultimate number of affinely independent points (§2.4.2.3)
belonging to it;

dimF = sup
ρ

dim{x2− x1 , x3− x1 , . . . , xρ− x1 | xi∈F , i=1 . . . ρ} (169)

The point of intersection in C with a strictly supporting hyperplane identifies an
extreme point, but not vice versa. The nonempty intersection of any supporting
hyperplane with C identifies a face, in general, but not vice versa. To acquire a converse,
the concept exposed face requires introduction:

2.6.1 Exposure

2.6.1.0.1 Definition. Exposed face, exposed point, vertex, facet. [215, §A.2.3, §A.2.4]

� F is an exposed face of an n-dimensional convex set C iff there is a supporting
hyperplane ∂H to C such that

F = C ∩ ∂H (170)

Only faces of dimension −1 through n−1 can be exposed by a hyperplane.

� An exposed point, the definition of vertex, is equivalent to a zero-dimensional exposed
face; the point of intersection with a strictly supporting hyperplane.

� A facet is an (n−1)-dimensional exposed face of an n-dimensional convex set C ;
facets exist in one-to-one correspondence with the (n−1)-dimensional faces.2.26

� {exposed points} = {extreme points}
{exposed faces} ⊆ {faces} △

2.26This coincidence occurs simply because the facet’s dimension is the same as the dimension of the
supporting hyperplane exposing it.
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BA

D

C

Figure 35: Closed convex set in R2. Point A is exposed hence extreme; a classical
vertex. Point B is extreme but not an exposed point. Point C is exposed and extreme;
zero-dimensional exposure makes it a vertex. Point D is neither an exposed or extreme
point although it belongs to a one-dimensional exposed face. [215, §A.2.4] [347, §3.6]
Closed face AB is exposed; a facet. The arc is not a conventional face, yet it is composed
entirely of extreme points. Union of all rotations of this entire set about its vertical edge
produces another convex set in three dimensions having no edges; but that convex set
produced by rotation about horizontal edge containing D has edges.
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2.6.1.1 Density of exposed points

For any closed convex set C , its exposed points constitute a dense subset of its extreme
points; [325, §18] [352] [347, §3.6, p.115] dense in the sense [412] that closure of that subset
yields the set of extreme points.

For the convex set illustrated in Figure 35, point B cannot be exposed because it
relatively bounds both the facet AB and the closed quarter circle, each bounding the set.
Since B is not relatively interior to any line segment in the set, then B is an extreme point
by definition. Point B may be regarded as the limit of some sequence of exposed points
beginning at vertex C .

2.6.1.2 Face transitivity and algebra

Faces of a convex set enjoy transitive relation. If F1 is a face (an extreme set) of F2

which in turn is a face of F3 , then it is always true that F1 is a face of F3 . (The parallel
statement for exposed faces is false. [325, §18]) For example, any extreme point of F2 is
an extreme point of F3 ; in this example, F2 could be a face exposed by a hyperplane
supporting polyhedron F3 . [239, def.115/6 p.358] Yet it is erroneous to presume that
a face, of dimension 1 or more, consists entirely of extreme points. Nor is a face of
dimension 2 or more entirely composed of edges, and so on.

For the polyhedron in R3 from Figure 22, for example, the nonempty faces exposed
by a hyperplane are the vertices, edges, and facets; there are no more. The zero-, one-,
and two-dimensional faces are in one-to-one correspondence with the exposed faces in that
example.

2.6.1.3 Smallest face

Define the smallest face F , that contains some element G , of a convex set C :

F(C ∋G) (171)

videlicet, C ⊃ rel intF(C ∋G) ∋ G . An affine set has no faces except itself and the empty
set. The smallest face, that contains G , of intersection of convex set C with an affine set
A [255, §2.4] [256]

F((C∩A)∋G) = F(C ∋G) ∩ A (172)

equals intersection of A with the smallest face, that contains G , of set C .

2.6.1.4 Conventional boundary

(confer §2.1.7.2) Relative boundary

rel ∂ C = C \ rel int C (24)

is equivalent to:
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0

X

X

(a)
0

(b)

Figure 36: (a) Two-dimensional nonconvex cone drawn truncated. Boundary of this cone
is itself a cone. Each half is itself a convex cone. (b) This convex cone (drawn truncated)
is a line through the origin in any dimension. It has no relative boundary, while its relative
interior comprises entire line.

2.6.1.4.1 Definition. Conventional boundary of convex set. [215, §C.3.1]
The relative boundary ∂ C of a nonempty convex set C is the union of all exposed faces
of C . △

Equivalence to (24) comes about because it is conventionally presumed that any
supporting hyperplane, central to the definition of exposure, does not contain C .
[325, p.100] Any face F of convex set C (that is not C itself) belongs to rel ∂ C . (§2.8.2.1)

2.7 Cones

In optimization, convex cones achieve prominence because they generalize subspaces. Most
compelling is the projection analogy: Projection on a subspace can be ascertained from
projection on its orthogonal complement (Figure 180), whereas projection on a closed
convex cone can be determined from projection instead on its algebraic complement (§2.13,
Figure 181, §E.9.2); called the polar cone.

2.7.0.0.1 Definition. Ray.
The one-dimensional set

{ζ Γ + B | ζ ≥ 0 , Γ 6= 0} ⊂ Rn (173)

defines a halfline called a ray in nonzero direction Γ∈Rn having base B∈Rn. When
B=0, a ray is the conic hull of direction Γ ; hence a convex cone. △

Relative boundary of a single ray, base 0 in any dimension, is the origin because that
is the union of all exposed faces not containing the entire set. Its relative interior is the
ray itself excluding the origin.
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0

Figure 37: This nonconvex cone in R2 is a pair of lines through the origin. [266, §2.4]
Because the lines are linearly independent, they are algebraic complements whose vector
sum is R2 a convex cone.

0

Figure 38: Boundary of a convex cone in R2 is a nonconvex cone; a pair of rays emanating
from the origin.

X

X

Figure 39: Union of two pointed closed convex cones in R2 is nonconvex cone X .
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X

X

Figure 40: Truncated nonconvex cone X ={x∈R2 | x1≥ x2 , x1 x2≥ 0}. Boundary is
also a cone. [266, §2.4] (Cartesian axes drawn for reference.) Each half (about the origin)
is itself a convex cone.

0

X

Figure 41: Nonconvex cone X drawn truncated in R2. Boundary is also a cone. [266, §2.4]
Cone exterior is convex cone.
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2.7.1 Cone defined

A set X is called, simply, cone if and only if

Γ ∈ X ⇒ ζ Γ ∈ X for all ζ ≥ 0 (174)

where X denotes closure of cone X ; e.g, Figure 38, Figure 39. An example of nonconvex
cone is the union of two opposing quadrants: X ={x∈R2 | x1 x2≥ 0}. [410, §2.5] Similar
examples are Figure 36 and Figure 40.

All cones obey (174) and can be defined by an aggregate of rays emanating exclusively
from the origin. Hence all closed cones contain the origin 0 and are unbounded, excepting
the simplest cone {0}. The empty set ∅ is not a cone, but its conic hull is;

cone ∅ = {0} (104)

2.7.2 Convex cone

We call set K a convex cone iff

Γ1 ,Γ2 ∈ K ⇒ ζ Γ1 + ξ Γ2 ∈ K for all ζ , ξ ≥ 0 (175)

id est, if and only if any conic combination of elements from K belongs to its closure.
Apparent from this definition, ζ Γ1∈ K and ξ Γ2 ∈ K ∀ ζ , ξ≥ 0 ; meaning, K is a cone.
Set K is convex since, for any particular ζ , ξ≥ 0

µ ζ Γ1 + (1 − µ) ξ Γ2 ∈ K ∀µ ∈ [0, 1] (176)

because µ ζ , (1 − µ) ξ ≥ 0. Obviously,

{X} ⊃ {K} (177)

the set of all convex cones is a proper subset of all cones. The set of convex cones is
a narrower but more familiar class of cone, any member of which can be equivalently
described as the intersection of a possibly (but not necessarily) infinite number of
hyperplanes (through the origin) and halfspaces whose bounding hyperplanes pass through
the origin; a halfspace-description (§2.4). Convex cones need not be full-dimensional.

More familiar convex cones are Lorentz cone (confer Figure 49)2.27

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ=2 (178)

and polyhedral cone (§2.12.1.0.1); e.g, any orthant generated by Cartesian half-axes
(§2.1.3). Esoteric examples of convex cones include the point at the origin, any line
through the origin, any ray having the origin as base such as the nonnegative real line R+

in subspace R , any halfspace partially bounded by a hyperplane through the origin, the
positive semidefinite cone SM

+ (191), the cone of Euclidean distance matrices EDMN (978)
(§6), completely positive semidefinite matrices {CCT |C≥ 0} [41, p.71], any subspace, and
Euclidean vector space Rn.

2.27 a.k.a: second-order cone, quadratic cone, circular cone (§2.9.2.8.1), unbounded ice-cream cone
united with its interior.

http://books.google.com/books?id=AllToPtYGGgC&pg=PA71&lpg=PA71&dq=berman+shaked-monderer+%22cones+of+completely+positive+matrices%22&source=bl&ots=4oWwYJMZW8&sig=xuCYeghUfSW-fAbUkx48VhaxyvY&hl=en&ei=mIm-SsWLC5DWtgPz69lA&sa=X&oi=book_result&ct=result&resnum=1#v=onepage&q=&f=false
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Figure 42: Not a cone; ironically, the three-dimensional flared horn (with or without its
interior) resembling mathematical symbol ≻ denoting strict cone membership and partial
order.

2.7.2.1 cone invariance

More Euclidean bodies are cones, it seems, than are not.2.28 The convex cone class
of Euclidean body is invariant to scaling, linear and single- or many-valued inverse
linear transformation, vector summation, and Cartesian product, but is not invariant
to translation. [325, p.22]

2.7.2.1.1 Theorem. Cone intersection (nonempty).

� Intersection of an arbitrary collection of convex cones is a convex cone. [325, §2, §19]

� Intersection of an arbitrary collection of closed convex cones is a closed convex cone.
[274, §2.3]

� Intersection of a finite number of polyhedral cones (Figure 53 p.124, §2.12.1.0.1)
remains a polyhedral cone. ⋄

The property pointedness is ordinarily associated with a convex cone but, strictly speaking,

� pointed cone < convex cone (Figure 38, Figure 39)

2.28confer Figures: 27 36 37 38 39 40 41 42 44 46 53 58 61 63 64 66 67 68 69 70 152 165 191
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2.7.2.1.2 Definition. Pointed convex cone. (confer §2.12.2.2)
A convex cone K is pointed iff it contains no line. Equivalently, K is not pointed iff there
exists any nonzero direction Γ∈ K such that −Γ∈ K . If the origin is an extreme point
of K or, equivalently, if

K ∩ −K = {0} (179)

then K is pointed, and vice versa. [347, §2.10] A convex cone is pointed iff the origin is
the smallest nonempty face of its closure. △

Then a pointed closed convex cone, by principle of separating hyperplane (§2.4.2.7), has
a strictly supporting hyperplane at the origin. The simplest and only bounded [410, p.75]
convex cone K= {0} ⊆ Rn is pointed, by convention, but not full-dimensional. Its relative
boundary is the empty set ∅ (25) while its relative interior is the point 0 itself (12). The
pointed convex cone that is a halfline, emanating from the origin in Rn, has relative
boundary 0 while its relative interior is the halfline itself excluding 0. Pointed are any
Lorentz cone, cone of Euclidean distance matrices EDMN in symmetric hollow subspace
SN

h , and positive semidefinite cone SM
+ in ambient SM .

2.7.2.1.3 Theorem. Pointed cones. [56, §3.3.15, exer.20]
A closed convex cone K⊂Rn is pointed if and only if there exists a normal α such that
the set

C , {x∈K | 〈x , α〉 = 1} (180)

is closed, bounded, and K= cone C . Equivalently, K is pointed if and only if there exists
a vector β normal to a hyperplane strictly supporting K ; id est, for some positive scalar ǫ

〈x , β〉 ≥ ǫ‖x‖ ∀x∈K (181)

⋄

If closed convex cone K is not pointed, then it has no extreme point.2.29 Yet a pointed
closed convex cone has only one extreme point [43, §3.3]: the exposed point residing at
the origin; its vertex. Pointedness is invariant to Cartesian product by (179). And from
the cone intersection theorem it follows that an intersection of convex cones is pointed if
at least one of the cones is; implying, each and every nonempty exposed face of a pointed
closed convex cone is a pointed closed convex cone.

2.7.2.2 Pointed closed convex cone induces partial order

Relation ¹ represents partial order on some set if that relation possesses2.30

reflexivity (x¹x)

antisymmetry (x¹z , z¹x ⇒ x=z)

transitivity (x¹ y , y¹z ⇒ x¹z), (x¹ y , y≺z ⇒ x≺z)

2.29 nor does it have extreme directions (§2.8.1).
2.30A set is totally ordered if it further obeys a comparability property of the relation: for each and every
x and y from the set, x¹ y or y¹ x ; e.g, one-dimensional real vector space R is the smallest unbounded
totally ordered and connected set.
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C1

C2

x + K

y −K

x

y

(b)

(a)

R2

Figure 43: (confer Figure 73) (a) Point x is the minimum element of set C1 with respect
to cone K because cone translated to x∈ C1 contains entire set. (Cones drawn truncated.)
(b) Point y is a minimal element of set C2 with respect to cone K because negative
cone translated to y∈ C2 contains only y . These concepts, minimum/minimal, become
equivalent under a total order.
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A pointed closed convex cone K induces partial order on Rn or Rm×n, [22, §1] [341, p.7]
essentially defined by vector or matrix inequality;

x ¹
K

z ⇔ z − x ∈ K (182)

x ≺
K

z ⇔ z − x ∈ rel intK (183)

Neither x or z is necessarily a member of K for these relations to hold. Only
when K is a nonnegative orthant Rn

+ do these inequalities reduce to ordinary entrywise
comparison (§2.13.4.2.3) while partial order lingers. Inclusive of that special case, we
ascribe nomenclature generalized inequality to comparison with respect to a pointed closed
convex cone.

We say two points x and y are comparable when x¹ y or y¹ x with respect to pointed
closed convex cone K . Visceral mechanics of actually comparing points, when cone K
is not an orthant, are well illustrated in the example of Figure 67 which relies on the
equivalent membership-interpretation in definition (182) or (183).

Comparable points and the minimum element of some vector- or matrix-valued
partially ordered set are thus well defined, so nonincreasing sequences with respect to cone
K can therefore converge in this sense: Point x∈ C is the (unique) minimum element of
set C with respect to cone K iff for each and every z ∈ C we have x¹ z ; equivalently, iff
C ⊆ x + K .2.31

A closely related concept, minimal element, is useful for partially ordered sets having
no minimum element: Point x∈ C is a minimal element of set C with respect to pointed
closed convex cone K if and only if (x −K) ∩ C = x . (Figure 43) No uniqueness is implied
here, although implicit is the assumption: dimK ≥ dim aff C . In words, a point that is a
minimal element is smaller (with respect to K) than any other point in the set to which
it is comparable.

Further properties of partial order with respect to pointed closed convex cone K are
not defining:

homogeneity (x¹ y , λ≥0 ⇒ λx¹λz), (x≺ y , λ>0 ⇒ λx≺λz)

additivity (x¹z , u¹v ⇒ x+u¹ z+v), (x≺z , u¹v ⇒ x+u≺ z+v)

2.7.2.2.1 Definition. Proper cone: a cone that is

� pointed

� closed

� convex

� full-dimensional. △

2.31Borwein & Lewis [56, §3.3 exer.21] ignore possibility of equality to x + K in this condition, and require
a second condition: . . . and C ⊂ y + K for some y in R

n implies x ∈ y + K .
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A proper cone remains proper under injective linear transformation. [94, §5.1]
Examples of proper cones are the positive semidefinite cone SM

+ in the ambient space
of symmetric matrices (§2.9), the nonnegative real line R+ in vector space R , or any
orthant in Rn, and the set of all coefficients of univariate degree-n polynomials nonnegative
on interval [0, 1] [63, exmp.2.16] or univariate degree-2n polynomials nonnegative over R
[63, exer.2.37].

2.8 Cone boundary

Every hyperplane supporting a convex cone contains the origin. [215, §A.4.2] Because any
supporting hyperplane to a convex cone must therefore itself be a cone, then from the
cone intersection theorem (§2.7.2.1.1) it follows:

2.8.0.0.1 Lemma. Cone faces. [27, §II.8]
Each nonempty exposed face of a convex cone is a convex cone. ⋄

2.8.0.0.2 Theorem. Proper-cone boundary.
Suppose a nonzero point Γ lies on the boundary ∂K of proper cone K in Rn. Then it
follows that the ray {ζ Γ | ζ ≥ 0} also belongs to ∂K . ⋄

Proof. By virtue of its propriety, a proper cone guarantees existence of a strictly
supporting hyperplane at the origin. [325, cor.11.7.3]2.32 Hence the origin belongs to the
boundary of K because it is the zero-dimensional exposed face. The origin belongs to the
ray through Γ , and the ray belongs to K by definition (174). By the cone faces lemma, each
and every nonempty exposed face must include the origin. Hence the closed line segment
0Γ must lie in an exposed face of K because both endpoints do by Definition 2.6.1.4.1.
That means there exists a supporting hyperplane ∂H to K containing 0Γ . So the ray
through Γ belongs both to K and to ∂H . ∂H must therefore expose a face of K that
contains the ray; id est,

{ζ Γ | ζ ≥ 0} ⊆ K ∩ ∂H ⊂ ∂K (184)

¨

Proper cone {0} in R0 has no boundary (24) because (12)

rel int{0} = {0} (185)

The boundary of any proper cone in R is the origin.

The boundary of any convex cone whose dimension exceeds 1 can be constructed
entirely from an aggregate of rays emanating exclusively from the origin.

2.32Rockafellar’s corollary yields a supporting hyperplane at the origin to any convex cone in R
n not equal

to R
n.
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K

∂K∗

Figure 44: K is a pointed polyhedral cone not full-dimensional in R3(drawn truncated in a
plane parallel to the floor upon which you stand). Dual cone K∗ is a wedge whose truncated
boundary is illustrated (drawn perpendicular to the floor). In this particular instance,
K⊂ intK∗ (excepting the origin). (Cartesian coordinate axes drawn for reference.)
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2.8.1 Extreme direction

The property extreme direction arises naturally in connection with the pointed closed
convex cone K⊂Rn, being analogous to extreme point. [325, §18, p.162]2.33 An extreme
direction Γε of pointed K is a vector corresponding to an edge that is a ray {ζ Γε∈K | ζ≥0}
emanating from the origin.2.34 Nonzero direction Γε in pointed K is extreme if and only if

ζ1 Γ1 + ζ2 Γ2 6= Γε ∀ ζ1 , ζ2 ≥ 0 , ∀ Γ1 ,Γ2 ∈ K\{ζ Γε∈K | ζ≥0} (186)

In words, an extreme direction in a pointed closed convex cone is the direction of a ray,
called an extreme ray, that cannot be expressed as a conic combination of directions of
any rays in the cone distinct from it.

An extreme ray is a one-dimensional face of K . By (105), extreme direction Γε is not
a point relatively interior to any line segment in K\{ζ Γε∈K | ζ≥0}. Thus, by analogy,
the corresponding extreme ray {ζ Γε∈K | ζ≥0} is not a ray relatively interior to any
plane segment 2.35 in K .

2.8.1.1 extreme distinction, uniqueness

An extreme direction is unique, but its vector representation Γε is not because any positive
scaling of it produces another vector in the same (extreme) direction. Hence an extreme
direction is unique to within a positive scaling. When we say extreme directions are
distinct, we are referring to distinctness of rays containing them. Nonzero vectors of
various length in the same extreme direction are therefore interpreted to be identical
extreme directions.2.36

The extreme directions of the polyhedral cone in Figure 27 (p.64), for example,
correspond to its three edges. For any pointed polyhedral cone, there is a one-to-one
correspondence of one-dimensional faces with extreme directions.

The extreme directions of the positive semidefinite cone (§2.9) comprise the infinite set
of all symmetric rank-one matrices. [22, §6] [211, §III] It is sometimes prudent to instead
consider the less infinite but complete normalized set, for M > 0 (confer (235))

{zzT∈ SM | ‖z‖= 1} (187)

The positive semidefinite cone in one dimension M =1, S+ the nonnegative real line, has
one extreme direction belonging to its relative interior; an idiosyncrasy of dimension 1.

Pointed closed convex cone K= {0} has no extreme direction because extreme
directions are nonzero by definition.

� If closed convex cone K is not pointed, then it has no extreme directions and no
vertex. [22, §1]

Conversely, pointed closed convex cone K is equivalent to the convex hull of its vertex and
all its extreme directions. [325, §18, p.167] That is the practical utility of extreme direction;
to facilitate construction of polyhedral sets, apparent from the extremes theorem:

2.33We diverge from Rockafellar’s extreme direction: “extreme point at infinity”.
2.34An edge (§2.6.0.0.3) of a convex cone is not necessarily a ray. A convex cone may contain an edge
that is a line; e.g, a wedge-shaped polyhedral cone (K∗ in Figure 44).
2.35A planar fragment; in this context, a planar cone.
2.36Like vectors, an extreme direction can be identified with the Cartesian point at the vector’s head with
respect to the origin.
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2.8.1.1.1 Theorem. (Klee) Extremes. [347, §3.6] [325, §18, p.166]
(confer §2.3.2, §2.12.2.0.1) Any closed convex set containing no lines can be expressed as
the convex hull of its extreme points and extreme rays. ⋄

It follows that any element of a convex set containing no lines may be expressed as a
linear combination of its extreme elements; e.g, §2.9.2.7.1.

2.8.1.2 generators

In the narrowest sense, generators for a convex set comprise any collection of points and
directions whose convex hull constructs the set.

When the extremes theorem applies, the extreme points and directions are called
generators of a convex set. An arbitrary collection of generators for a convex set includes
its extreme elements as a subset; the set of extreme elements of a convex set is a minimal
set of generators for that convex set. Any polyhedral set has a minimal set of generators
whose cardinality is finite.

When the convex set under scrutiny is a closed convex cone, conic combination
of generators during construction is implicit as shown in Example 2.8.1.2.1 and
Example 2.10.2.0.1. So, a vertex at the origin (if it exists) becomes benign.

We can, of course, generate affine sets by taking the affine hull of any collection of
points and directions. We broaden, thereby, the meaning of generator to be inclusive of
all kinds of hulls.

Any hull of generators is loosely called a vertex-description. (§2.3.4) Hulls encompass
subspaces, so any basis constitutes generators for a vertex-description; span basisR(A).

2.8.1.2.1 Example. Application of extremes theorem.
Given an extreme point at the origin and N extreme rays {ζ Γi , i=1 . . . N | ζ≥0}
(§2.7.0.0.1), denoting the ith extreme direction by Γi∈Rn, then their convex hull (86) is

P =
{

[0 Γ1 Γ2 · · · ΓN ] a ζ | aT1 = 1, a º 0, ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] a ζ | aT1 ≤ 1, a º 0, ζ ≥ 0
}

=
{

[Γ1 Γ2 · · · ΓN ] b | b º 0
}

⊂ Rn
(188)

a closed convex set that is simply a conic hull like (103). 2

2.8.2 Exposed direction

2.8.2.0.1 Definition. Exposed point & direction of pointed convex cone. [325, §18]
(confer §2.6.1.0.1)

� When a convex cone has a vertex, an exposed point, it resides at the origin; there
can be only one.

� In the closure of a pointed convex cone, an exposed direction is the direction of a
one-dimensional exposed face that is a ray emanating from the origin.

� {exposed directions} ⊆ {extreme directions} △
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For a proper cone in vector space Rn with n≥ 2, we can say more:

{exposed directions} = {extreme directions} (189)

It follows from Lemma 2.8.0.0.1 for any pointed closed convex cone, there is one-to-one
correspondence of one-dimensional exposed faces with exposed directions; id est, there is
no one-dimensional exposed face that is not a ray base 0.

The pointed closed convex cone EDM2, for example, is a ray in isomorphic subspace R
whose relative boundary (§2.6.1.4.1) is the origin. The conventionally exposed directions
of EDM2 constitute the empty set ∅ ⊂ {extreme direction}. This cone has one extreme
direction belonging to its relative interior; an idiosyncrasy of dimension 1.

2.8.2.1 Connection between boundary and extremes

2.8.2.1.1 Theorem. Exposed. [325, §18.7] (confer §2.8.1.1.1)
Any closed convex set C containing no lines (and whose dimension is at least 2) can be
expressed as closure of the convex hull of its exposed points and exposed rays. ⋄

From Theorem 2.8.1.1.1,

rel ∂ C = C \ rel int C (24)

= conv{exposed points and exposed rays} \ rel int C
= conv{extreme points and extreme rays} \ rel int C











(190)

Thus each and every extreme point of a convex set (that is not a point) resides on its
relative boundary, while each and every extreme direction of a convex set (that is not a
halfline and contains no line) resides on its relative boundary because extreme points and
directions of such respective sets do not belong to relative interior by definition.

The relationship between extreme sets and the relative boundary actually goes deeper:
Any face F of convex set C (that is not C itself) belongs to rel ∂ C , so dimF < dim C .
[325, §18.1.3]

2.8.2.2 Converse caveat

It is inconsequent to presume that each and every extreme point and direction is necessarily
exposed, as might be erroneously inferred from the conventional boundary definition
(§2.6.1.4.1); although it can correctly be inferred: each and every extreme point and
direction belongs to some exposed face.

Arbitrary points residing on the relative boundary of a convex set are not necessarily
exposed or extreme points. Similarly, the direction of an arbitrary ray, base 0, on the
boundary of a convex cone is not necessarily an exposed or extreme direction. For the
polyhedral cone illustrated in Figure 27, for example, there are three two-dimensional
exposed faces constituting the entire boundary, each composed of an infinity of rays. Yet
there are only three exposed directions.

Neither is an extreme direction on the boundary of a pointed convex cone necessarily
an exposed direction. Lift the two-dimensional set in Figure 35, for example, into three
dimensions such that no two points in the set are collinear with the origin. Then its conic
hull can have an extreme direction B on the boundary that is not an exposed direction,
illustrated in Figure 45.
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D

C
B

A

0

Figure 45: Properties of extreme points carry over to extreme directions. [325, §18] Four
rays (drawn truncated) on boundary of conic hull of two-dimensional closed convex set
from Figure 35 lifted to R3. Ray through point A is exposed hence extreme. Extreme
direction B on cone boundary is not an exposed direction, although it belongs to the
exposed face cone{A ,B}. Extreme ray through C is exposed. Point D is neither an
exposed or extreme direction although it belongs to a two-dimensional exposed face of the
conic hull.
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2.9 Positive semidefinite (PSD) cone

The cone of positive semidefinite matrices studied in this section is arguably the
most important of all non-polyhedral cones whose facial structure we completely
understand.

−Alexander Barvinok [27, p.78]

2.9.0.0.1 Definition. Positive semidefinite cone.
The set of all symmetric positive semidefinite matrices of particular dimension M is called
the positive semidefinite cone:

SM
+ ,

{

A ∈ SM | A º 0
}

=
{

A ∈ SM | yTAy≥ 0 ∀ ‖y‖= 1
}

=
⋂

‖y‖=1

{

A ∈ SM | 〈yyT, A〉 ≥ 0
}

≡ {A ∈ SM
+ | rankA ≤ M }

(191)

formed by the intersection of an infinite number of halfspaces (§2.4.1.1) in vectorized
variable2.37 A , each halfspace having partial boundary containing the origin in isomorphic
RM(M+1)/2. It is a unique immutable proper cone in the ambient space of symmetric
matrices SM .

The positive definite (full-rank) matrices comprise the cone interior

int SM
+ =

{

A ∈ SM | A ≻ 0
}

=
{

A ∈ SM | yTAy> 0 ∀ ‖y‖= 1
}

=
⋂

‖y‖=1

{

A ∈ SM | 〈yyT, A〉 > 0
}

= {A ∈ SM
+ | rankA = M }

(192)

while all singular positive semidefinite matrices (having at least one 0 eigenvalue) reside
on the cone boundary (Figure 46); (§A.7.5)

∂SM
+ =

{

A ∈ SM | A º 0 , A ⊁ 0
}

=
{

A ∈ SM | min{λ(A)i , i=1 . . . M } = 0
}

=
{

A ∈ SM
+ | 〈yyT, A〉=0 for some ‖y‖= 1

}

= {A ∈ SM
+ | rankA < M }

(193)

where λ(A)∈ RM holds the eigenvalues of A . △

The only symmetric positive semidefinite matrix in SM
+ having M 0-eigenvalues resides

at the origin. (§A.7.3.0.1)

2.37 infinite in number when M >1. Because yTA y=yTATy , matrix A is almost always assumed
symmetric. (§A.2.1)
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α

√
2β

γ

svec ∂ S2

+

[

α β
β γ

]

Minimal set of generators are the extreme directions: svec{yyT | y∈RM}

Figure 46: (d’Aspremont) Truncated boundary of PSD cone in S2 plotted in isometrically
isomorphic R3 via svec (56); 0-contour of smallest eigenvalue (193). Lightest shading
is closest, darkest shading is farthest and inside shell. Entire boundary can be
constructed from an aggregate of rays (§2.7.0.0.1) emanating exclusively from origin:
{

κ2[ z2
1

√
2z1z2 z2

2 ]T | κ∈R , z∈R2
}

. A circular cone in this dimension (§2.9.2.8), each
and every ray on boundary corresponds to an extreme direction but such is not the
case in any higher dimension (confer Figure 27). PSD cone geometry is not as simple
in higher dimensions [27, §II.12] although PSD cone is selfdual (376) in ambient real space
of symmetric matrices. [211, §II] PSD cone has no two-dimensional face in any dimension,
its only extreme point residing at 0.
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2.9.0.1 Membership

Observe notation Aº 0 denoting a positive semidefinite matrix;2.38 meaning
(confer §2.3.1.1), matrix A belongs to the positive semidefinite cone in the subspace of
symmetric matrices whereas A≻ 0 denotes membership to that cone’s interior. (§2.13.2)
Notation A≻ 0, denoting a positive definite matrix, can be read: symmetric matrix A
exceeds the origin with respect to the positive semidefinite cone interior. These notations
further imply that coordinates [sic ] for orthogonal expansion of a positive (semi)definite
matrix must be its (nonnegative) positive eigenvalues (§2.13.7.1.1, §E.6.4.1.1) when
expanded in its eigenmatrices (§A.5.0.3); id est, eigenvalues must be (nonnegative)
positive.

Generalizing comparison on the real line, the notation AºB denotes comparison
with respect to the positive semidefinite cone; (§A.3.1) id est, AºB ⇔ A−B∈ SM

+ but
neither matrix A or B necessarily belongs to the positive semidefinite cone. Yet, (1575)
AºB , Bº 0 ⇒ Aº0 ; id est, A∈ SM

+ . (confer Figure 67)

2.9.0.1.1 Example. Equality constraints in semidefinite program (687).
Employing properties of partial order (§2.7.2.2) for the pointed closed convex positive
semidefinite cone, it is easy to show, given A + S = C

S º 0 ⇔ A ¹ C
S ≻ 0 ⇔ A ≺ C

(194)

2

2.9.1 Positive semidefinite cone is convex

The set of all positive semidefinite matrices forms a convex cone in the ambient space of
symmetric matrices because any pair satisfies definition (175); [218, §7.1] videlicet, for all
ζ1 , ζ2 ≥ 0 and each and every A1 , A2 ∈ SM

ζ1 A1 + ζ2 A2 º 0 ⇐ A1 º 0 , A2 º 0 (195)

a fact easily verified by the definitive test for positive semidefiniteness of a symmetric
matrix (§A):

A º 0 ⇔ xTA x ≥ 0 for each and every ‖x‖= 1 (196)

id est, for A1 , A2 º 0 and each and every ζ1 , ζ2 ≥ 0

ζ1 xTA1 x + ζ2 xTA2 x ≥ 0 for each and every normalized x∈ RM (197)

The convex cone SM
+ is more easily visualized in the isomorphic vector space

RM(M+1)/2 whose dimension is the number of free variables in a symmetric M×M matrix.
When M = 2 the PSD cone is semiinfinite in expanse in R3, having boundary illustrated
in Figure 46. When M = 3 the PSD cone is six-dimensional, and so on.

2.38 the same as nonnegative definite matrix.
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X

x

C

Figure 47: Convex set C={X∈ S × x∈R | Xº xxT} drawn truncated.

2.9.1.0.1 Example. Sets from maps of positive semidefinite cone.
The set

C = {X∈ Sn× x∈Rn | Xº xxT} (198)

is convex because it has Schur-form; (§A.4)

X − xxTº 0 ⇔ f(X , x) ,

[

X x
xT 1

]

º 0 (199)

e.g, Figure 47. Set C is the inverse image (§2.1.9.0.1) of Sn+1
+ under affine mapping f .

The set {X∈ Sn× x∈Rn | X¹ xxT} is not convex, in contrast, having no Schur-form.
Yet for fixed x = xp , the set

{X∈ Sn | X¹ xpxT
p } (200)

is simply the negative semidefinite cone shifted to xpxT
p . 2

2.9.1.0.2 Example. Inverse image of positive semidefinite cone.
Now consider finding the set of all matrices X∈ SN satisfying

AX + B º 0 (201)

given A ,B∈ SN . Define the set

X , {X | AX + B º 0} ⊆ SN (202)

which is the inverse image of the positive semidefinite cone under affine transformation
g(X),AX+B . Set X must therefore be convex by Theorem 2.1.9.0.1.
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Yet we would like a less amorphous characterization of this set, so instead we consider
its vectorization (37) which is easier to visualize:

vec g(X) = vec(AX) + vec B = (I ⊗A) vec X + vec B (203)

where
I ⊗A , QΛQT∈ SN 2

(204)

is block-diagonal formed by Kronecker product (§A.1.1 no.31, §D.1.2.1). Assign

x , vec X ∈ RN 2

b , vec B ∈ RN 2 (205)

then make the equivalent problem: Find

vecX = {x∈RN 2 | (I ⊗A)x + b ∈ K} (206)

where
K , vec SN

+ (207)

is a proper cone isometrically isomorphic with the positive semidefinite cone in the
subspace of symmetric matrices; the vectorization of every element of SN

+ . Utilizing
the diagonalization (204),

vecX = {x | ΛQTx ∈ QT(K − b)}
= {x | ΦQTx ∈ Λ†QT(K − b)} ⊆ RN 2 (208)

where † denotes matrix pseudoinverse (§E) and

Φ , Λ†Λ (209)

is a diagonal projection matrix whose entries are either 1 or 0 (§E.3). We have the
complementary sum

ΦQTx + (I − Φ)QTx = QTx (210)

So, adding (I − Φ)QTx to both sides of the membership within (208) admits

vecX = {x∈RN 2 | QTx ∈ Λ†QT(K − b) + (I − Φ)QTx}
= {x | QTx ∈ Φ

(

Λ†QT(K − b)
)

⊕ (I − Φ)RN 2}
= {x ∈ QΛ†QT(K − b) ⊕ Q(I − Φ)RN 2}
= (I ⊗A)†(K − b) ⊕ N (I ⊗A)

(211)

where we used the facts: linear function QTx in x on RN 2

is a bijection, and ΦΛ†= Λ†.

vecX = (I ⊗A)† vec(SN
+ − B) ⊕ N (I ⊗A) (212)

In words, set vecX is the vector sum of the translated PSD cone (linearly mapped onto
the rowspace of I ⊗A (§E)) and the nullspace of I ⊗A (synthesis of fact from §A.6.3
and §A.7.3.0.1). Should I ⊗A have no nullspace, then vecX =(I ⊗A)−1 vec(SN

+ − B)
which is the expected result. 2
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(a) (b)

√
2β

α

[

α β
β γ

]

svec S2

+

Figure 48: (a) Projection of truncated PSD cone S2

+ , truncated above γ=1, on

αβ-plane in isometrically isomorphic R3. View is from above with respect to Figure 46.
(b) Truncated above γ=2. From these plots we might infer, for example, line
{

[ 0 1/
√

2 γ ]T | γ∈R
}

intercepts PSD cone at some large value of γ ; in fact, γ=∞.
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2.9.2 Positive semidefinite cone boundary

For any symmetric positive semidefinite matrix A of rank ρ , there must exist a rank ρ
matrix Y such that A be expressible as an outer product in Y ; [348, §6.3]

A = Y Y T∈ SM
+ , rankA = rankY = ρ , Y ∈ RM×ρ (213)

Then the boundary of the positive semidefinite cone may be expressed

∂SM
+ =

{

A ∈ SM
+ | rankA<M

}

=
{

Y Y T | Y ∈ RM×M−1
}

(214)

Because the boundary of any convex body is obtained with closure of its relative interior
(§2.1.7, §2.1.7.2), from (192) we must also have

SM
+ =

{

A ∈ SM
+ | rankA=M

}

=
{

Y Y T | Y ∈ RM×M , rankY =M
}

=
{

Y Y T | Y ∈ RM×M
}

(215)

2.9.2.1 rank ρ subset of the positive semidefinite cone

For the same reason (closure), this applies more generally; for 0≤ρ≤M

{

A ∈ SM
+ | rankA= ρ

}

=
{

A ∈ SM
+ | rankA≤ ρ

}

(216)

For easy reference, we give such generally nonconvex sets a name: rank ρ subset of a
positive semidefinite cone. For ρ < M this subset, nonconvex for M > 1, resides on the
positive semidefinite cone boundary.

2.9.2.1.1 Exercise. Closure and rank ρ subset.
Prove equality in (216). H

For example,

∂SM
+ =

{

A ∈ SM
+ | rankA=M− 1

}

=
{

A ∈ SM
+ | rankA≤M− 1

}

(217)

In S2, each and every ray on the boundary of the positive semidefinite cone in isomorphic
R3 corresponds to a symmetric rank-1 matrix (Figure 46), but that does not hold in any
higher dimension.

2.9.2.2 Subspace tangent to open rank ρ subset

When the positive semidefinite cone subset in (216) is left unclosed as in

M(ρ) ,
{

A ∈ SN
+ | rankA= ρ

}

(218)
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then we can specify a subspace tangent to the positive semidefinite cone at a particular
member of manifold M(ρ). Specifically, the subspace RM tangent to manifold M(ρ) at
B∈M(ρ) [202, §5, prop.1.1]

RM(B) , {XB + BXT | X∈ RN×N} ⊆ SN (219)

has dimension

dim svecRM(B) = ρ

(

N − ρ − 1

2

)

= ρ(N − ρ) +
ρ(ρ + 1)

2
(220)

Tangent subspace RM contains no member of the positive semidefinite cone SN
+ whose

rank exceeds ρ .
Subspace RM(B) is a hyperplane supporting SN

+ when B∈M(N−1). Another

good example of tangent subspace is given in §E.7.2.0.2 by (2115); RM(11T) = SN⊥
c ,

orthogonal complement to the geometric center subspace. (Figure 162 p.470)

2.9.2.3 Faces of PSD cone, their dimension versus rank

Each and every face of the positive semidefinite cone, having dimension less than that of
the cone, is exposed. [262, §6] [231, §2.3.4] Because each and every face of the positive
semidefinite cone contains the origin (§2.8.0.0.1), each face belongs to a subspace of
dimension the same as the face.

Define F(SM
+ ∋A) (171) as the smallest face, that contains a given positive

semidefinite matrix A , of positive semidefinite cone SM
+ . Then matrix A , having

ordered diagonalization A = QΛQT∈ SM
+ (§A.5.1), is relatively interior to2.39 [27, §II.12]

[120, §31.5.3] [255, §2.4] [256]

F
(

SM
+ ∋A

)

= {X∈ SM
+ | N (X) ⊇ N (A)}

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT, X 〉 = 0}

= {QΛΛ†ΨΛΛ†QT |Ψ∈ SM
+ }

= QΛΛ† SM
+ ΛΛ†QT

≃ Srank A
+

(221)

which is isomorphic with convex cone Srank A
+ ; e.g, Q SM

+ QT = SM
+ . The larger the

nullspace of A , the smaller the face. (140) Thus dimension of the smallest face that
contains given matrix A is

dimF
(

SM
+ ∋A

)

= rank(A)(rank(A) + 1)/2 (222)

in isomorphic RM(M+1)/2, and each and every face of SM
+ is isomorphic with a positive

semidefinite cone having dimension the same as the face. Observe: not all dimensions are
represented, and the only zero-dimensional face is the origin. The positive semidefinite
cone has no facets, for example.

2.39For X∈ S
M
+ , A= QΛQT∈ S

M
+ , show N (X)⊇ N (A) ⇔ 〈Q(I − ΛΛ†)QT, X 〉 = 0.

Given 〈Q(I − ΛΛ†)QT, X 〉 = 0 ⇔ R(X)⊥ N (A). (§A.7.4)
(⇒) Assume N (X)⊇ N (A) , then R(X)⊥ N (X)⊇ N (A).
(⇐) Assume R(X)⊥ N (A) , then X Q(I − ΛΛ†)QT = 0 ⇒ N (X)⊇ N (A). ¨
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2.9.2.3.1 Table: Rank k versus dimension of S3

+ faces

k dimF(S3

+∋ rank-k matrix)
0 0

boundary ≤1 1
≤2 3

interior ≤3 6

For positive semidefinite cone S2

+ in isometrically isomorphic R3 depicted in Figure 46,
rank-2 matrices belong to the interior of that face having dimension 3 (the entire closed
cone), rank-1 matrices belong to relative interior of a face having dimension2.40 1, and
the only rank-0 matrix is the point at the origin (the zero-dimensional face).

2.9.2.3.2 Exercise. Bijective isometry.
Prove that the smallest face of positive semidefinite cone SM

+ , containing a particular
full-rank matrix A having ordered diagonalization QΛQT, is the entire cone: id est,
prove Q SM

+ QT = SM
+ from (221). H

2.9.2.4 rank-k face of PSD cone

Any rank-k<M positive semidefinite matrix A belongs to a face, of positive semidefinite
cone SM

+ , described by intersection with a hyperplane: for ordered diagonalization of

A=QΛQT∈ SM
+ Ä rank(A)= k<M

F
(

SM
+ ∋A

)

= {X∈ SM
+ | 〈Q(I − ΛΛ†)QT, X 〉 = 0}

=

{

X∈ SM
+

∣

∣

∣

∣

〈

Q

(

I −
[

I∈ Sk 0
0T 0

])

QT, X

〉

= 0

}

= SM
+ ∩ ∂H+

≃ Sk
+

(223)

Faces are doubly indexed: continuously indexed by orthogonal matrix Q , and
discretely indexed by rank k . Each and every orthogonal matrix Q makes projectors
Q(: , k+1:M)Q(: , k+1:M)T indexed by k , in other words, each projector describing
a normal2.41 svec

(

Q(: , k+1:M)Q(: , k+1:M)T
)

to a supporting hyperplane ∂H+

(containing the origin) exposing a face (§2.11) of the positive semidefinite cone containing
rank-k (and less) matrices.

2.9.2.4.1 Exercise. Simultaneously diagonalizable means commutative.
Given diagonalization of rank-k≤M positive semidefinite matrix A = QΛQT and any
particular Ψº 0, both in SM from (221), show how I−ΛΛ† and ΛΛ†ΨΛΛ† share a
complete set of eigenvectors. H

2.40The boundary constitutes all the one-dimensional faces, in R
3, which are rays emanating from the

origin.
2.41Any vectorized nonzero matrix ∈ S

M
+ is normal to a hyperplane supporting S

M
+ (§2.13.1) because PSD

cone is selfdual. Normal on boundary exposes nonzero face by (329) (330).



108 CHAPTER 2. CONVEX GEOMETRY

2.9.2.5 PSD cone face containing principal submatrix

A principal submatrix of a matrix A∈RM×M is formed by discarding any particular subset
of its rows and columns having the same indices. There are M !/(1!(M−1)!) principal 1 × 1
submatrices, M !/(2!(M−2)!) principal 2 × 2 submatrices, and so on, totaling 2M − 1
principal submatrices including A itself. Principal submatrices of a symmetric matrix
are symmetric. A given symmetric matrix has rank ρ iff it has a nonsingular principal
ρ×ρ submatrix but none larger. [315, §5-10] By loading vector y in test yTAy (§A.2)
with various binary patterns, it follows that any principal submatrix must be positive
(semi)definite whenever A is (Theorem A.3.1.0.4). If positive semidefinite matrix A∈SM

+

has principal submatrix of dimension ρ with rank r , then rankA ≤ M−ρ+r by (1625).

Because each and every principal submatrix of a positive semidefinite matrix in SM is
positive semidefinite, then each principal submatrix belongs to a certain face of positive
semidefinite cone SM

+ by (222). Of special interest are full-rank positive semidefinite
principal submatrices, for then description of smallest face becomes simpler. We can find
the smallest face, that contains a particular complete full-rank principal submatrix of A ,
by embedding that submatrix in a 0 matrix of the same dimension as A : Were Φ a
binary diagonal matrix

Φ = δ2(Φ)∈ SM , Φii∈ {0 , 1} (224)

having diagonal entry 0 corresponding to a discarded row and column from A∈ SM
+ , then

any principal submatrix2.42 so embedded can be expressed ΦAΦ ; id est, for an embedded
principal submatrix ΦAΦ∈SM

+ Ä rank ΦAΦ = rank Φ≤ rankA

F
(

SM
+ ∋ΦAΦ

)

= {X∈ SM
+ | N (X) ⊇ N (ΦAΦ)}

= {X∈ SM
+ | 〈I − Φ , X 〉 = 0}

= {ΦΨΦ |Ψ∈ SM
+ }

≃ Srank Φ
+

(225)

Smallest face that contains an embedded principal submatrix, whose rank is not
necessarily full, may be expressed like (221): For embedded principal submatrix
ΦAΦ∈SM

+ Ä rank ΦAΦ≤ rank Φ , apply ordered diagonalization instead to

Φ̂TA Φ̂ = UΥUT∈ Srank Φ
+ (226)

where U−1 = UT is an orthogonal matrix and Υ= δ2(Υ) is diagonal. Then

F
(

SM
+ ∋ΦAΦ

)

= {X∈ SM
+ | N (X) ⊇ N (ΦAΦ)}

= {X∈ SM
+ | 〈Φ̂U(I − ΥΥ†)UTΦ̂T + I − Φ , X 〉 = 0}

= {Φ̂UΥΥ†ΨΥΥ†UTΦ̂T |Ψ∈ Srank Φ
+ }

≃ Srank ΦAΦ
+

(227)

2.42To express a leading principal submatrix, for example, Φ =

[

I 0
0T 0

]

.

http://books.google.com/books?id=5_sxtcnvLhoC&pg=PA103&lpg=PA103&dq=rank+of+principal+submatrix&source=bl&ots=Zof_uQkJFG&sig=W-BlCkeQ1JrExj01v8G13F-fm9U&hl=en&ei=dH3jS5ezKIqYsgOM1_i6DQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0CCMQ6AEwAw#v=onepage&q=rank%20of%20principal%20submatrix&f=false
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where binary diagonal matrix Φ is partitioned into nonzero and zero columns by
permutation Ξ∈RM×M ;

ΦΞT , [ Φ̂ 0 ]∈RM×M , rank Φ̂ = rankΦ , Φ = Φ̂Φ̂T∈ SM , Φ̂TΦ̂ = I (228)

Any embedded principal submatrix may be expressed

ΦAΦ = Φ̂Φ̂TA Φ̂Φ̂T∈ SM
+ (229)

where Φ̂TA Φ̂∈ Srank Φ
+ extracts the principal submatrix whereas Φ̂Φ̂TA Φ̂Φ̂T embeds it.

2.9.2.5.1 Example. Smallest face containing disparate elements.
Smallest face formula (221) can be altered to accommodate a union of points {Ai∈ SM

+ } :

F
(

SM
+ ⊃

⋃

i

Ai

)

=

{

X∈ SM
+

∣

∣

∣ N (X) ⊇
⋂

i

N (Ai)

}

(230)

To see that, imagine two vectorized matrices A1 and A2 on diametrically opposed
sides of the positive semidefinite cone S2

+ boundary pictured in Figure 46. Regard

svec A1 as normal to a hyperplane in R3 containing a vectorized basis for its
nullspace: svec basisN (A1) (§2.5.3). Similarly, there is a second hyperplane containing
svec basisN (A2) having normal svecA2 . While each hyperplane is two-dimensional,
each nullspace has only one affine dimension because A1 and A2 are rank-1. Because
our interest is only that part of the nullspace in the positive semidefinite cone, then by

〈X , Ai〉 = 0 ⇔ XAi = AiX = 0 , X,Ai∈ SM
+ (1681)

we may ignore the fact that vectorized nullspace svec basisN (Ai) is a proper subspace of
the hyperplane. We may think instead in terms of whole hyperplanes because equivalence
(1681) says that the positive semidefinite cone effectively filters that subset of the
hyperplane, whose normal is Ai , constituting N (Ai).

And so hyperplane intersection makes a line intersecting the positive semidefinite cone
S2

+ but only at the origin. In this hypothetical example, smallest face containing those two
matrices therefore comprises the entire cone because every positive semidefinite matrix has
nullspace containing 0. The smaller the intersection, the larger the smallest face. 2

2.9.2.5.2 Exercise. Disparate elements.
Prove that (230) holds for an arbitrary set {Ai∈ SM

+ ∀ i∈ I}. One way is by showing
⋂N (Ai)∩ SM

+ = conv({Ai})⊥∩ SM
+ ; with perpendicularity ⊥ as in (372).2.43 H

2.9.2.6 face of all PSD matrices having same principal submatrix

Now we ask what is the smallest face of the positive semidefinite cone containing all
matrices having a complete principal submatrix in common; in other words, that face
containing all PSD matrices (of any rank) with particular entries fixed − the smallest

2.43Hint: (1681) (2014).
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face containing all PSD matrices whose fixed entries correspond to some given embedded
principal submatrix ΦAΦ . To maintain generality,2.44 we move an extracted principal
submatrix Φ̂TA Φ̂∈ Srank Φ

+ into leading position via permutation Ξ from (228): for A∈ SM
+

ΞAΞT ,

[

Φ̂TA Φ̂ B
BT C

]

∈ SM
+ (231)

By properties of partitioned PSD matrices in §A.4.0.1,

basisN
([

Φ̂TA Φ̂ B
BT C

])

⊇
[

0
I − CC†

]

(232)

Hence N (ΞXΞT) ⊇ N (ΞAΞT) + span

[

0
I

]

in a smallest face F formula2.45 because all

PSD matrices, given fixed principal submatrix, are admitted: Define a set of all PSD
matrices

S ,

{

A = ΞT

[

Φ̂TA Φ̂ B
BT C

]

Ξ º 0

∣

∣

∣

∣

B∈Rrank Φ×M−rank Φ, C∈ SM−rank Φ
+

}

(233)

having fixed embedded principal submatrix ΦAΦ = ΞT

[

Φ̂TA Φ̂ 0
0T 0

]

Ξ . So

F
(

SM
+ ⊇S

)

=
{

X∈ SM
+ | N (X) ⊇ N (S)

}

= {X∈ SM
+ | 〈Φ̂U(I − ΥΥ†)UTΦ̂T, X 〉 = 0}

=

{

ΞT

[

UΥΥ† 0
0T I

]

Ψ

[

ΥΥ†UT 0
0T I

]

Ξ

∣

∣

∣

∣

Ψ∈ SM
+

}

≃ SM−rank Φ+rank ΦAΦ
+

(234)

Ξ= I whenever ΦAΦ denotes a leading principal submatrix. Smallest face of the positive
semidefinite cone, containing all matrices having the same full-rank principal submatrix
(ΥΥ†= I , Υº 0), is the entire cone (Exercise 2.9.2.3.2).

2.9.2.7 Extreme directions of positive semidefinite cone

Because the positive semidefinite cone is pointed (§2.7.2.1.2), there is a one-to-one
correspondence of one-dimensional faces with extreme directions in any dimension M ;
id est, because of the cone faces lemma (§2.8.0.0.1) and direct correspondence of exposed
faces to faces of SM

+ , it follows: there is no one-dimensional face of the positive semidefinite
cone that is not a ray emanating from the origin.

Symmetric dyads constitute the set of all extreme directions: For M > 1

{yyT∈ SM | y∈RM} ⊂ ∂SM
+ (235)

2.44 to fix any principal submatrix; not only leading principal submatrices.
2.45 meaning, more pertinently, I − Φ is dropped from (227).
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this superset of extreme directions (infinite in number, confer (187)) for the positive
semidefinite cone is, generally, a subset of the boundary. By extremes theorem 2.8.1.1.1,
the convex hull of extreme rays and origin is the positive semidefinite cone: (§2.8.1.2.1)

conv{yyT∈ SM | y∈RM} =

{ ∞
∑

i=1

bi ziz
T
i | zi∈RM , bº0

}

= SM
+ (236)

For two-dimensional matrices (M =2, Figure 46)

{yyT∈ S2 | y∈R2} = ∂S2

+ (237)

while for one-dimensional matrices, in exception, (M =1, §2.7)

{yy∈ S | y 6=0} = int S+ (238)

Each and every extreme direction yyT makes the same angle with the Identity matrix
in isomorphic RM(M+1)/2, dependent only on dimension; videlicet,2.46

Á(yyT, I ) = arccos
〈yyT, I 〉

‖yyT‖F ‖I‖F
= arccos

(

1√
M

)

∀ y ∈ RM (239)

This means the positive semidefinite cone broadens in higher dimension.

2.9.2.7.1 Example. Positive semidefinite matrix from extreme directions.
Diagonalizability (§A.5) of symmetric matrices yields the following results:

Any positive semidefinite matrix (1539) in SM can be written in the form

A =

M
∑

i=1

λi ziz
T
i = ÂÂT =

∑

i

âi â
T
i º 0 , λ º 0 (240)

a conic combination of linearly independent extreme directions (âi â
T
i or ziz

T
i where

‖zi‖=1), where λ is a vector of eigenvalues.
If we limit consideration to all symmetric positive semidefinite matrices bounded via

unity trace
C , {A º 0 | tr A = 1} (91)

then any matrix A from that set may be expressed as a convex combination of linearly
independent extreme directions;

A =

M
∑

i=1

λi ziz
T
i ∈ C , 1Tλ = 1 , λ º 0 (241)

Implications are:

1. set C is convex (an intersection of PSD cone with hyperplane),

2. because the set of eigenvalues corresponding to a given square matrix A is unique
(§A.5.0.1), no single eigenvalue can exceed 1 ; id est, I ºA

3. and the converse holds: set C is an instance of Fantope (91). 2

2.46Analogy with respect to the EDM cone is considered in [201, p.162] where it is found: angle is not
constant. Extreme directions of the EDM cone can be found in §6.4.3.2. The cone’s axis is −E = 11T− I
(1183).
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2.9.2.7.2 Exercise. Extreme directions of positive semidefinite cone.
Prove, directly from definition (186), that symmetric dyads (235) constitute the set of all
extreme directions of the positive semidefinite cone. H

2.9.2.8 Positive semidefinite cone is generally not circular

Extreme angle equation (239) suggests that the positive semidefinite cone might be
invariant to rotation about its axis of revolution; id est, a circular cone. We investigate
this now:

2.9.2.8.1 Definition. Circular cone:2.47

a pointed closed convex cone having hyperspherical sections orthogonal to its axis of
revolution about which the cone is invariant to rotation. △

A conic section is the intersection of a cone with any hyperplane. In three dimensions,
an intersecting plane perpendicular to a circular cone’s axis of revolution produces a
section bounded by a circle. (Figure 49) A prominent example of a circular cone in convex
analysis is Lorentz cone (178). We also find that the positive semidefinite cone and cone
of Euclidean distance matrices are circular cones, but only in low dimension.

The positive semidefinite cone has axis of revolution that is the ray (base 0) through
the Identity matrix I . Consider a set of normalized extreme directions of the positive
semidefinite cone: for some arbitrary positive constant a∈R+

{yyT∈ SM | ‖y‖ =
√

a} ⊂ ∂SM
+ (242)

The distance from each extreme direction to the axis of revolution is radius

R , inf
c
‖yyT− cI‖F = a

√

1 − 1

M
(243)

which is the distance from yyT to a
M I ; the length of vector yyT− a

M I .

Because distance R (in a particular dimension) from the axis of revolution to each and
every normalized extreme direction is identical, the extreme directions lie on the boundary
of a hypersphere in isometrically isomorphic RM(M+1)/2. From Example 2.9.2.7.1, the
convex hull (excluding vertex at the origin) of the normalized extreme directions is a
conic section

C , conv{yyT | y∈RM , yTy = a} = SM
+ ∩ {A∈ SM | 〈I , A〉 = a} (244)

orthogonal to Identity matrix I ;

〈

C− a

M
I , I

〉

= tr(C− a

M
I ) = 0 (245)

2.47A circular cone is assumed convex throughout, although not so by other authors. We also assume a
right circular cone.
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0

R

Figure 49: This solid circular cone in R3 continues upward infinitely. Axis of revolution
is illustrated as vertical line through origin. R represents radius: distance measured from
an extreme direction to axis of revolution. Were this a Lorentz cone, any plane slice
containing axis of revolution would make a right angle.



114 CHAPTER 2. CONVEX GEOMETRY

a
M I

θ a
M 11T

yyT

R

Figure 50: Illustrated is a section, perpendicular to axis of revolution, of circular cone
from Figure 49. Radius R is distance from any extreme direction to axis at a

M I . Vector
a
M 11T is an arbitrary reference by which to measure angle θ .

Proof. Although the positive semidefinite cone possesses some characteristics of a
circular cone, we can show it is not by demonstrating shortage of extreme directions; id est,
some extreme directions corresponding to each and every angle of rotation about the axis
of revolution are nonexistent: Referring to Figure 50, [419, §1-7]

cos θ =

〈

a
M 11T− a

M I , yyT− a
M I

〉

a2(1 − 1
M )

(246)

Solving for vector y we get

a(1 + (M−1) cos θ) = (1Ty)2 (247)

which does not have real solution ∀ 0≤ θ≤ 2π in every matrix dimension M . ¨

From the foregoing proof we can conclude that the positive semidefinite cone
might be circular but only in matrix dimensions 1 and 2. Because of a shortage of
extreme directions, conic section (244) cannot be hyperspherical by the extremes theorem
(§2.8.1.1.1, Figure 45).

2.9.2.8.2 Exercise. Circular semidefinite cone.
Prove the positive semidefinite cone to be circular in matrix dimensions 1 and 2 while it
is a rotation of Lorentz cone (178) in matrix dimension 2 .2.48 H

2.48Hint: Given cone

{[

α β/
√

2

β/
√

2 γ

]

|
√

α2+ β2 ≤ γ

}

, show 1√
2

[

γ + α β
β γ − α

]

is a vector

rotation that is positive semidefinite under the same inequality.
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1

]

A11

√
2A12

A22

svec ∂S2

+

p1A11 ≥ ±p2A12

p2A22 ≥ ±p1A12

Figure 51: Proper polyhedral cone K , created by intersection of halfspaces, inscribes
PSD cone in isometrically isomorphic R3 as predicted by Geršgorin discs theorem for
A=[Aij ]∈ S2. Hyperplanes supporting K intersect along boundary of PSD cone. Four
extreme directions of K coincide with extreme directions of PSD cone.
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2.9.2.8.3 Example. Positive semidefinite cone inscription in three dimensions.

Theorem. Geršgorin discs. [218, §6.1] [383] [271, p.140]
For p∈Rm

+ given A=[Aij ]∈ Sm, then all eigenvalues of A belong to the union of m
closed intervals on the real line;

λ(A) ∈
m
⋃

i=1















ξ ∈ R |ξ − Aii| ≤ ̺i ,
1

pi

m
∑

j=1
j 6= i

pj |Aij |















=
m
⋃

i=1

[Aii−̺i , Aii+̺i] (248)

Furthermore, if a union of k of these m [intervals] forms a connected region
that is disjoint from all the remaining n−k [intervals], then there are precisely
k eigenvalues of A in this region. ⋄

To apply the theorem to determine positive semidefiniteness of symmetric matrix A ,
we observe that for each i we must have

Aii ≥ ̺i (249)

Suppose
m = 2 (250)

so A∈ S2. Vectorizing A as in (56), svec A belongs to isometrically isomorphic R3. Then
we have m2m−1 = 4 inequalities, in the matrix entries Aij with Geršgorin parameters
p = [pi]∈R2

+ ,

p1A11 ≥ ±p2A12

p2A22 ≥ ±p1A12
(251)

which describe an intersection of four halfspaces in Rm(m+1)/2. That intersection creates
the proper polyhedral cone K (§2.12.1) whose construction is illustrated in Figure 51.
Drawn truncated is the boundary of the positive semidefinite cone svec S2

+ and the
bounding hyperplanes supporting K .

Created by means of Geršgorin discs, K always belongs to the positive semidefinite cone
for any nonnegative value of p∈Rm

+ . Hence any point in K corresponds to some positive
semidefinite matrix A . Only the extreme directions of K intersect the positive semidefinite
cone boundary in this dimension; the four extreme directions of K are extreme directions of
the positive semidefinite cone. As p1/p2 increases in value from 0, two extreme directions
of K sweep the entire boundary of this positive semidefinite cone. Because the entire
positive semidefinite cone can be swept by K , the system of linear inequalities

Y Tsvec A ,

[

p1 ±p2/
√

2 0

0 ±p1/
√

2 p2

]

svec A º 0 (252)

(when made dynamic) can replace a semidefinite constraint Aº 0 ; id est, for

K = {z | Y Tz º 0} ⊂ svec Sm
+ (253)

given p where Y ∈ Rm(m+1)/2×m2m−1

svec A ∈ K ⇒ A ∈ Sm
+ (254)
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but
∃ p Ä Y Tsvec A º 0 ⇔ A º 0 (255)

In other words, diagonal dominance [218, p.349, §7.2.3]

Aii ≥
m

∑

j=1
j 6= i

|Aij | , ∀ i = 1 . . . m (256)

is generally only a sufficient condition for membership to the PSD cone. But by dynamic
weighting p in this dimension, diagonal dominance was made necessary and sufficient.

2

In higher dimension (m > 2), boundary of the positive semidefinite cone is no longer
constituted completely by its extreme directions (symmetric rank-one matrices); its
geometry becomes intricate. How all the extreme directions can be swept by an inscribed
polyhedral cone,2.49 similarly to the foregoing example, remains an open question.

2.9.2.8.4 Exercise. Dual inscription.
Find dual proper polyhedral cone K∗ from Figure 51. H

2.9.2.9 Boundary constituents of the positive semidefinite cone

2.9.2.9.1 Lemma. Sum of positive semidefinite matrices. (confer (1555))
For A,B∈ SM

+

rank(A + B) = rank(µA + (1−µ)B) (257)

over open interval (0, 1) of µ . ⋄

Proof. Any positive semidefinite matrix belonging to the PSD cone has an eigenvalue
decomposition that is a positively scaled sum of linearly independent symmetric dyads. By
the linearly independent dyads definition in §B.1.1.0.1, rank of the sum A+B is equivalent
to the number of linearly independent dyads constituting it. Linear independence is
insensitive to further positive scaling by µ . The assumption of positive semidefiniteness
prevents annihilation of any dyad from the sum A +B . ¨

2.9.2.9.2 Example. Rank function quasiconcavity. (confer §3.8)
For A,B∈Rm×n [218, §0.4]

rankA + rankB ≥ rank(A + B) (258)

that follows from the fact [348, §3.6]

dimR(A) + dimR(B) = dimR(A + B) + dim(R(A) ∩R(B)) (259)

For A,B∈ SM
+

rankA + rankB ≥ rank(A + B) ≥ min{rankA , rankB} (1555)

2.49It is not necessary to sweep the entire boundary in higher dimension.
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that follows from the fact

N (A + B) = N (A) ∩ N (B) , A,B∈ SM
+ (160)

Rank is a quasiconcave function on SM
+ because the right-hand inequality in (1555) has

the concave form (645); videlicet, Lemma 2.9.2.9.1. 2

From this example we see, unlike convex functions, quasiconvex functions are not
necessarily continuous. (§3.8) We also glean:

2.9.2.9.3 Theorem. Convex subsets of positive semidefinite cone.
Subsets of the positive semidefinite cone SM

+ , for 0≤ρ≤M

SM
+ (ρ) , {X∈ SM

+ | rankX ≥ ρ} (260)

are pointed convex cones, but not closed unless ρ = 0 ; id est, SM
+ (0)= SM

+ . ⋄

Proof. Given ρ , a subset SM
+ (ρ) is convex if and only if convex combination of any

two members has rank at least ρ . That is confirmed by applying identity (257) from
Lemma 2.9.2.9.1 to (1555); id est, for A,B∈ SM

+ (ρ) on closed interval [0, 1] of µ

rank(µA + (1−µ)B) ≥ min{rankA , rankB} (261)

It can similarly be shown, almost identically to proof of the lemma, any conic combination
of A,B in subset SM

+ (ρ) remains a member; id est, ∀ ζ , ξ≥ 0

rank(ζA + ξB) ≥ min{rank(ζA) , rank(ξB)} (262)

Therefore, SM
+ (ρ) is a convex cone. ¨

Another proof of convexity can be made by projection arguments:

2.9.2.10 Projection on SM
+ (ρ)

Because these cones SM
+ (ρ) indexed by ρ (260) are convex, projection on them is

straightforward. Given a symmetric matrix H having diagonalization H , QΛQT∈ SM

(§A.5.1) with eigenvalues Λ arranged in nonincreasing order, then its Euclidean projection
(minimum-distance projection) on SM

+ (ρ)

PSM
+ (ρ)H = QΥ⋆QT (263)

corresponds to a map of its eigenvalues:

Υ⋆
ii =

{

max {ǫ , Λii} , i=1 . . . ρ
max {0 , Λii} , i=ρ+1 . . . M

(264)

where ǫ is positive but arbitrarily close to 0.
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2.9.2.10.1 Exercise. Projection on open convex cones.
Prove (264) using Theorem E.9.2.0.1. H

Because each H∈ SM has unique projection on SM
+ (ρ) (despite possibility of repeated

eigenvalues in Λ), we may conclude it is a convex set by the Bunt-Motzkin theorem
(§E.9.0.0.1).

Compare (264) to the well-known result regarding Euclidean projection on a rank ρ
subset of the positive semidefinite cone (§2.9.2.1)

SM
+ \SM

+ (ρ + 1) = {X∈ SM
+ | rankX ≤ ρ} (216)

PSM
+ \SM

+ (ρ+1)H = QΥ⋆QT (265)

As proved in §7.1.4, this projection of H corresponds to the eigenvalue map

Υ⋆
ii =

{

max {0 , Λii} , i=1 . . . ρ
0 , i=ρ+1 . . . M

(1430)

Together these two results (264) and (1430) mean: A higher-rank solution to projection
on the positive semidefinite cone lies arbitrarily close to any given lower-rank projection,
but not vice versa. Were the number of nonnegative eigenvalues in Λ known a priori not
to exceed ρ , then these two different projections would produce identical results in the
limit ǫ→ 0.

2.9.2.11 Uniting constituents

Interior of the PSD cone int SM
+ is convex by Theorem 2.9.2.9.3, for example, because all

positive semidefinite matrices having rank M constitute the cone interior.
All positive semidefinite matrices of rank less than M constitute the cone boundary; an

amalgam of positive semidefinite matrices of different rank. Thus each nonconvex subset
of positive semidefinite matrices, for 0<ρ<M

{Y ∈ SM
+ | rankY = ρ} (266)

having rank ρ successively 1 lower than M , appends a nonconvex constituent to the cone
boundary; but only in their union is the boundary complete: (confer §2.9.2)

∂SM
+ =

M−1
⋃

ρ=0

{Y ∈ SM
+ | rankY = ρ} (267)

The composite sequence, the cone interior in union with each successive constituent,
remains convex at each step; id est, for 0≤k≤M

M
⋃

ρ=k

{Y ∈ SM
+ | rankY = ρ} (268)

is convex for each k by Theorem 2.9.2.9.3.
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2.9.2.12 Peeling constituents

Proceeding the other way: To peel constituents off the complete positive semidefinite cone
boundary, one starts by removing the origin; the only rank-0 positive semidefinite matrix.
What remains is convex. Next, the extreme directions are removed because they constitute
all the rank-1 positive semidefinite matrices. What remains is again convex, and so on.
Proceeding in this manner eventually removes the entire boundary leaving, at last, the
convex interior of the PSD cone; all the positive definite matrices.

2.9.2.12.1 Exercise. Difference A − B .
What about a difference of matrices A,B belonging to the PSD cone? Show:

� Difference of any two points on the boundary belongs to the boundary or exterior.

� Difference A−B , where A belongs to the boundary while B is interior, belongs to
the exterior. H

2.9.3 Barvinok’s proposition

Barvinok posits existence and quantifies an upper bound on rank of a positive semidefinite
matrix belonging to the intersection of the PSD cone with an affine subset:

2.9.3.0.1 Proposition. Affine intersection with PSD cone. [27, §II.13] [25, §2.2]
Consider finding a matrix X∈ SN satisfying

X º 0 , 〈Aj , X 〉 = bj , j =1 . . . m (269)

given nonzero linearly independent (vectorized) Aj ∈ SN and real bj . Define the affine
subset

A , {X | 〈Aj , X 〉= bj , j =1 . . . m} ⊆ SN (270)

If the intersection A ∩ SN
+ is nonempty given a number m of equalities, then there exists

a matrix X∈A ∩ SN
+ such that

rankX (rankX + 1)/2 ≤ m (271)

whence the upper bound2.50

rankX ≤
⌊√

8m + 1 − 1

2

⌋

(272)

Given desired rank instead, equivalently,

m < (rankX + 1)(rankX + 2)/2 (273)

2.50
§4.1.2.2 contains an intuitive explanation. This bound is itself limited above, of course, by N ; a tight

limit corresponding to an interior point of S
N
+ .
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An extreme point of A ∩ SN
+ satisfies (272) and (273). (confer §4.1.2.2) A matrix

X ,RTR is an extreme point if and only if the smallest face, that contains X , of A ∩ SN
+

has dimension 0 ; [255, §2.4] [256] id est, iff

dimF
(

(A ∩ SN
+ )∋X

)

= rank(X)(rank(X) + 1)/2 − rank
[

svec RA1R
T svec RA2R

T · · · svec RAmRT
]

(274)

(171) equals 0 in isomorphic RN(N+1)/2.
Now the intersection A ∩ SN

+ is assumed bounded: Assume a given nonzero upper
bound ρ on rank, a number of equalities

m=(ρ + 1)(ρ + 2)/2 (275)

and matrix dimension N≥ ρ + 2≥ 3. If the intersection is nonempty and bounded, then
there exists a matrix X∈A ∩ SN

+ such that

rankX ≤ ρ (276)

This represents a tightening of the upper bound; a reduction by exactly 1 of the bound
provided by (272) given the same specified number m (275) of equalities; id est,

rankX ≤
√

8m + 1 − 1

2
− 1 (277)

⋄

2.10 Conic independence (c.i.)

In contrast to extreme direction, the property conically independent direction is more
generally applicable; inclusive of all closed convex cones (not only pointed closed convex
cones). Arbitrary given directions {Γi∈Rn, i=1 . . . N} comprise a conically independent
set if and only if (confer §2.1.2, §2.4.2.3)

Γi ζi + · · · + Γj ζj − Γℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (278)

has no solution ζ∈RN
+ (ζi∈R+); in words, iff no direction from the given set

can be expressed as a conic combination of those remaining; e.g, Figure 52
[391, conic independence test (278) Matlab]. Arranging any set of generators for a
particular closed convex cone in a matrix columnar,

X , [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (279)

then this test of conic independence (278) may be expressed as a set of linear feasibility
problems: for ℓ = 1 . . . N

find ζ∈RN

subject to Xζ = Γℓ

ζ º 0
ζℓ = 0

(280)
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0
00

(a) (b) (c)

Figure 52: Vectors in R2 : (a) affinely and conically independent, (b) affinely independent
but not conically independent, (c) conically independent but not affinely independent.
None of the examples exhibits linear independence. (In general, a.i. < c.i.)

If feasible for any particular ℓ , then the set is not conically independent.
To find all conically independent directions from a set via (280), generator Γℓ must

be removed from the set once it is found (feasible) conically dependent on remaining
generators in X . So, to continue testing remaining generators when Γℓ is found to be
dependent, Γℓ must be discarded from matrix X before proceeding. A generator Γℓ that
is instead found conically independent of remaining generators in X , on the other hand,
is conically independent of any subset of remaining generators. A c.i. set thus found is not
necessarily unique.

It is evident that linear independence (l.i.) of N directions implies their conic
independence;

� l.i. ⇒ c.i.

which suggests, number of l.i. generators in the columns of X cannot exceed number of
c.i. generators. Denoting by k the number of conically independent generators contained
in X , we have the most fundamental rank inequality for convex cones

dim aff K = dim aff[0 X ] = rankX ≤ k ≤ N (281)

Whereas N directions in n dimensions can no longer be linearly independent once N
exceeds n , conic independence remains possible:

2.10.0.0.1 Table: Maximum number of c.i. directions

dimension n supk (pointed) supk (not pointed)

0 0 0
1 1 2
2 2 4
3 ∞ ∞
...

...
...

Assuming veracity of this table, there is an apparent vastness between two and three
dimensions. The finite numbers of conically independent directions indicate:
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� Convex cones in dimensions 0, 1, and 2 must be polyhedral. (§2.12.1)

Conic independence is certainly one convex idea that cannot be completely explained by
a two-dimensional picture as Barvinok suggests [27, p.vii].

From this table it is also evident that dimension of Euclidean space cannot exceed the
number of conically independent directions possible;

� n ≤ supk

2.10.1 Preservation of conic independence

Independence in the linear (§2.1.2.1), affine (§2.4.2.4), and conic senses can be preserved
under linear transformation. Suppose a matrix X∈ Rn×N (279) holds a conically
independent set columnar. Consider a transformation on the domain of such matrices

T (X) : Rn×N → Rn×N , XY (282)

where fixed matrix Y , [ y1 y2 · · · yN ]∈RN×N represents linear operator T . Conic
independence of {Xyi∈Rn, i=1 . . . N} demands, by definition (278),

Xyi ζi + · · · + Xyj ζj − Xyℓ = 0 , i 6= · · · 6=j 6=ℓ = 1 . . . N (283)

have no solution ζ∈RN
+ . That is ensured by conic independence of {yi∈RN} and by

R(Y )∩ N (X) = 0 ; seen by factoring out X .

2.10.1.1 linear maps of cones

[22, §7] If K is a convex cone in Euclidean space R and T is any linear mapping from
R to Euclidean space M , then T (K) is a convex cone in M and x ¹ y with respect
to K implies T (x)¹ T (y) with respect to T (K). If K is full-dimensional in R , then
so is T (K) in M .

If T is a linear bijection, then x ¹ y ⇔ T (x)¹ T (y). If K is pointed, then so is
T (K). And if K is closed, so is T (K). If F is a face of K , then T (F ) is a face of T (K).

Linear bijection is only a sufficient condition for pointedness and closedness; convex
polyhedra (§2.12) are invariant to any linear or inverse linear transformation [27, §I.9]
[325, p.44, thm.19.3].

2.10.2 Pointed closed convex K & conic independence

The following bullets can be derived from definitions (186) and (278) in conjunction with
the extremes theorem (§2.8.1.1.1):

The set of all extreme directions from a pointed closed convex cone K⊂Rn is not
necessarily a linearly independent set, yet it must be a conically independent set; (compare
Figure 27 on page 64 with Figure 53a)

� {extreme directions} ⇒ {c.i.}
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K

K

∂K∗

(a)

(b)

Figure 53: (a) A pointed polyhedral cone (drawn truncated) in R3 having six facets. The
extreme directions, corresponding to six edges emanating from the origin, are generators
for this cone; not linearly independent but they must be conically independent. (b) The
boundary of dual cone K∗ (drawn truncated) is now added to the drawing of same K . K∗

is polyhedral, proper, and has the same number of extreme directions as K has facets.
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0

H

x1

x2

x3

∂H

Figure 54: Minimal set of generators X = [x1 x2 x3 ]∈R2×3 (not extreme directions) for
halfspace about origin; affinely and conically independent.

When a conically independent set of directions from pointed closed convex cone K is known
to comprise generators, conversely, then all directions from that set must be extreme
directions of the cone;

� {extreme directions} ⇔ {c.i. generators of pointed closed convex K}

Barker & Carlson [22, §1] call the extreme directions a minimal generating set for a pointed
closed convex cone. A minimal set of generators is therefore a conically independent set
of generators, and vice versa,2.51 for a pointed closed convex cone.

An arbitrary collection of n or fewer distinct extreme directions from pointed closed
convex cone K⊂Rn is not necessarily a linearly independent set; e.g, dual extreme
directions (482) from Example 2.13.11.0.3.

� {≤ n extreme directions in Rn} ; { l.i.}

Linear dependence of few extreme directions is another convex idea that cannot be
explained by a two-dimensional picture as Barvinok suggests [27, p.vii]; indeed, it only
first comes to light in four dimensions! But there is a converse: [347, §2.10.9]

� {extreme directions} ⇐ { l.i. generators of closed convex K}

2.51This converse does not hold for nonpointed closed convex cones as Table 2.10.0.0.1 implies; e.g,
ponder four conically independent generators for a plane (n=2, Figure 52).
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2.10.2.0.1 Example. Vertex-description of halfspace H about origin.
From n + 1 points in Rn we can make a vertex-description of a convex cone that is a
halfspace H , where {xℓ∈Rn, ℓ=1 . . . n} constitutes a minimal set of generators for a
hyperplane ∂H through the origin. An example is illustrated in Figure 54. By demanding
the augmented set {xℓ∈Rn, ℓ=1 . . . n+1} be affinely independent (we want vector xn+1

not parallel to ∂H ), then

H =
⋃

ζ≥0

(ζ xn+1 + ∂H)

= {ζ xn+1 + cone{xℓ∈Rn, ℓ=1 . . . n} | ζ≥ 0}
= cone{xℓ∈Rn, ℓ=1 . . . n + 1}

(284)

a union of parallel hyperplanes. Cardinality is one step beyond dimension of the ambient
space, but {xℓ ∀ ℓ} is a minimal set of generators for this convex cone H which has no
extreme elements. 2

2.10.2.0.2 Exercise. Enumerating conically independent directions.
Do Example 2.10.2.0.1 in R and R3 by drawing two figures corresponding to Figure 54
and enumerating n + 1 conically independent generators for each. Describe a nonpointed
polyhedral cone in three dimensions having more than 8 conically independent generators.
(confer Table 2.10.0.0.1) H

2.10.3 Utility of conic independence

Perhaps the most useful application of conic independence is determination of the
intersection of closed convex cones from their halfspace-descriptions, or representation
of the sum of closed convex cones from their vertex-descriptions.

⋂Ki A halfspace-description for the intersection of any number of closed convex cones
Ki can be acquired by pruning normals; specifically, only the conically independent
normals from the aggregate of all the halfspace-descriptions need be retained.

∑Ki Generators for the sum of any number of closed convex cones Ki can be determined
by retaining only the conically independent generators from the aggregate of all the
vertex-descriptions.

Such conically independent sets are not necessarily unique or minimal.

2.11 When extreme means exposed

For any convex full-dimensional polyhedral set in Rn, distinction between the terms
extreme and exposed vanishes [347, §2.4] [120, §2.2] for faces of all dimensions except n ;
their meanings become equivalent as we saw in Figure 22 (discussed in §2.6.1.2). In other
words, each and every face of any polyhedral set (except the set itself) can be exposed by
a hyperplane, and vice versa; e.g, Figure 27.

Lewis [262, §6] [231, §2.3.4] claims nonempty extreme proper subsets and the exposed
subsets coincide for Sn

+ ; id est, each and every face of the positive semidefinite cone, whose
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dimension is less than dimension of the cone, is exposed. A more general discussion of
cones having this property can be found in [358]; e.g, Lorentz cone (178) [21, §II.A].

2.12 Convex polyhedra

Every polyhedron, such as the convex hull (86) of a bounded list X , can be expressed
as the solution set of a finite system of linear equalities and inequalities, and vice versa.
[120, §2.2]

2.12.0.0.1 Definition. Convex polyhedra, halfspace-description.
A convex polyhedron is the intersection of a finite number of halfspaces and hyperplanes;

P = {y | Ay º b , Cy = d} ⊆ Rn (285)

where coefficients A and C generally denote matrices. Each row of C is a vector normal
to a hyperplane, while each row of A is a vector inward-normal to a hyperplane partially
bounding a halfspace. △

By the halfspaces theorem in §2.4.1.1.1, a polyhedron thus described is a closed
convex set possibly not full-dimensional; e.g, Figure 22. Convex polyhedra2.52 are
finite-dimensional comprising all affine sets (§2.3.1, §2.1.4), polyhedral cones, line
segments, rays, halfspaces, convex polygons, solids [239, def.104/6 p.343], polychora,
polytopes,2.53 etcetera.

It follows from definition (285) by exposure that each face of a convex polyhedron is a
convex polyhedron.

Projection of any polyhedron on a subspace remains a polyhedron. More generally,
image and inverse image of a convex polyhedron under any linear transformation remains
a convex polyhedron; [27, §I.9] [325, thm.19.3] the foremost consequence being, invariance
of polyhedral set closedness.

When b and d in (285) are 0, the resultant is a polyhedral cone. The set of all
polyhedral cones is a subset of convex cones:

2.12.1 Polyhedral cone

From our study of cones, we see: the number of intersecting hyperplanes and halfspaces
constituting a convex cone is possibly but not necessarily infinite. When the number is
finite, the convex cone is termed polyhedral. That is the primary distinguishing feature
between the set of all convex cones and polyhedra; all polyhedra, including polyhedral
cones, are finitely generated [325, §19]. (Figure 55) We distinguish polyhedral cones in the
set of all convex cones for this reason, although all convex cones of dimension 2 or less are
polyhedral.

2.52We consider only convex polyhedra throughout, but acknowledge the existence of concave polyhedra.
[412, Kepler-Poinsot Solid ]
2.53Some authors distinguish bounded polyhedra via the designation polytope. [120, §2.2]

http://mathworld.wolfram.com/Kepler-PoinsotSolid.html
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2.12.1.0.1 Definition. Polyhedral cone, halfspace-description.2.54 (confer (103))
A polyhedral cone is the intersection of a finite number of halfspaces and hyperplanes
about the origin;

K = {y | Ay º 0 , Cy = 0} ⊆ Rn (a)

= {y | Ay º 0 , Cy º 0 , Cy ¹ 0} (b)

=







y |





A
C

−C



y º 0







(c)

(286)

where coefficients A and C generally denote matrices of finite dimension. Each row of C
is a vector normal to a hyperplane containing the origin, while each row of A is a vector
inward-normal to a hyperplane containing the origin and partially bounding a halfspace.

△

A polyhedral cone thus defined is closed, convex (§2.4.1.1), has only a finite number
of generators (§2.8.1.2), and can be not full-dimensional. (Minkowski) Conversely, any
finitely generated convex cone is polyhedral. (Weyl) [347, §2.8] [325, thm.19.1]

2.12.1.0.2 Exercise. Unbounded convex polyhedra.
Illustrate an unbounded polyhedron that is not a cone or its translation. H

From the definition it follows that any single hyperplane through the origin, or any
halfspace partially bounded by a hyperplane through the origin is a polyhedral cone. The
most familiar example of polyhedral cone is any quadrant (or orthant, §2.1.3) generated by
Cartesian half-axes. Esoteric examples of polyhedral cone include the point at the origin,
any line through the origin, any ray having the origin as base such as the nonnegative real
line R+ in subspace R , polyhedral flavor (proper) Lorentz cone (316), any subspace, and
Rn. More polyhedral cones are illustrated in Figure 53 and Figure 27.

2.12.2 Vertices of convex polyhedra

By definition, a vertex (§2.6.1.0.1) always lies on the relative boundary of a convex
polyhedron. [239, def.115/6 p.358] In Figure 22, each vertex of the polyhedron is located
at an intersection of three or more facets, and every edge belongs to precisely two facets
[27, §VI.1 p.252]. In Figure 27, the only vertex of that polyhedral cone lies at the origin.

The set of all polyhedral cones is clearly a subset of convex polyhedra and a subset of
convex cones (Figure 55). Not all convex polyhedra are bounded; evidently, neither can
they all be described by the convex hull of a bounded set of points as defined in (86).
Hence a universal vertex-description of polyhedra in terms of that same finite-length list
X (76):

2.54Rockafellar [325, §19] proposes affine sets be handled via complementary pairs of affine inequalities;
e.g, antisymmetry Cyºd and Cy¹d which can present severe difficulty to some interior-point methods
of numerical solution.

http://www.convexoptimization.com/wikimization/index.php/Rockafellar
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bounded
polyhedra

convex polyhedra

polyhedral
cones

convex cones

Figure 55: Polyhedral cones are finitely generated, unbounded, and convex.

X(: , 1)

X(: , 2)

P = {Xa | 1ºaº−1} C = {Xa | aT1=1 , aº0}

C

A = {Xa | aT1=1}

R2

Figure 56: A polyhedron’s generating list X does not necessarily constitute its vertices.
Polyhedron P is a parallelogram, polyhedron A is a line, while polyhedron C is a line
segment in P . Were vector a instead unbounded, P would become the subspace R(X) .
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2.12.2.0.1 Definition. Convex polyhedra, vertex-description.
Denote upper u and lower ℓ real vector bounds and a truncated N -dimensional a-vector

ai:j =

[

ai...
aj

]

(287)

By discriminating a suitable finite-length generating list (or set) arranged columnar in
X∈Rn×N , then any particular polyhedron may be described

P =
{

Xa | aT
1:k1 = 1 , u º am:N º ℓ , {1 . . . k} ∪ {m. . . N} = {1 . . . N}

}

(288)

where 0≤k≤N and 1≤m≤N+1. Setting k=0 removes the affine equality condition.
Setting m=N+1 removes the inequality. △

Coefficient indices in (288) may or may not be overlapping. From (78), (86), (103),
and (142), we summarize how the coefficient conditions may be applied;

affine set −→ aT
1:k1 = 1

polyhedral cone −→ am:N º 0

}

←− convex hull (m ≤ k)

subspace −→ ∞ºaº−∞
(289)

It is always possible to describe a convex hull in a region of overlapping indices because,
for 1 ≤ m ≤ k ≤ N

{am:k | aT
m:k1 = 1, am:k º 0} ⊆ {am:k | aT

1:k1 = 1, am:N º 0} (290)

Generating list members are not unique nor necessarily vertices of the corresponding
polyhedron; e.g, Figure 56. Indeed, for convex hull (86) (a special case of (288)), some
subset of list members may reside in the polyhedron’s relative interior. Conversely, convex
hull of the vertices and extreme rays of a polyhedron is identical to the convex hull of any
list generating that polyhedron; that is, extremes theorem 2.8.1.1.1.

2.12.2.1 Vertex-description of polyhedral cone

Given closed convex cone K in a subspace of Rn having any set of generators for it arranged
in a matrix X∈ Rn×N as in (279), then that cone is described setting m=1 and k=0 in
vertex-description (288):

K = cone X = {Xa | a º 0} ⊆ Rn (103)

a conic hull of N generators.

2.12.2.2 Pointedness

(§2.7.2.1.2) [347, §2.10] Assuming all generators constituting the columns of X∈ Rn×N are
nonzero, polyhedral cone K is pointed if and only if there is no nonzero aº 0 that solves
Xa=0 ; id est, iff

find a
subject to Xa = 0

1Ta = 1
a º 0

(291)
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1

S = {s | s º 0 , 1Ts ≤ 1}

Figure 57: Unit simplex S in R3 is a unique solid tetrahedron but not regular.

is infeasible or iff N (X) ∩ RN
+ = 0 .2.55 Otherwise, the cone will contain at least one line

and there can be no vertex; id est, the cone cannot otherwise be pointed. Any subspace,
Euclidean vector space Rn, or any halfspace are examples of nonpointed polyhedral cone;
hence, no vertex. This null-pointedness criterion Xa=0 means that a pointed polyhedral
cone is invariant to linear injective transformation.

Examples of pointed polyhedral cone K include: the origin, any 0-based ray in a
subspace, any two-dimensional V-shaped cone in a subspace, any orthant in Rn or Rm×n ;
e.g, nonnegative real line R+ in vector space R .

2.12.3 Unit simplex

A peculiar subset of the nonnegative orthant with halfspace-description

S , {s | s º 0 , 1Ts ≤ 1} ⊆ Rn
+ (292)

is a unique bounded convex full-dimensional polyhedron called unit simplex (Figure 57)
having n + 1 facets, n + 1 vertices, and dimension

dimS = n (293)

The origin supplies one vertex while heads of the standard basis [218] [348] {ei , i=1 . . . n}
in Rn constitute those remaining;2.56 thus its vertex-description:

S = conv {0, {ei , i=1 . . . n}}
=

{

[0 e1 e2 · · · en ] a | aT1 = 1 , a º 0
} (294)

2.55If rank X = n , then the dual cone K∗ (§2.13.1) is pointed. (309)
2.56In R

0 the unit simplex is the point at the origin, in R the unit simplex is the line segment [0, 1], in
R

2 it is a triangle and its relative interior, in R
3 it is the convex hull of a tetrahedron (Figure 57), in R

4

it is the convex hull of a pentatope [412], and so on.
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2.12.3.1 Simplex

The unit simplex comes from a class of general polyhedra called simplex, having
vertex-description: [98] [325] [410] [120] given n≥ k

conv{xℓ ∈Rn | ℓ = 1 . . . k+1, dim aff{xℓ}= k} (295)

So defined, a simplex is a closed bounded convex set possibly not full-dimensional.
Examples of simplices, by increasing affine dimension, are: a point, any line segment,
any triangle and its relative interior, a general tetrahedron, any five-vertex polychoron,
and so on.

2.12.3.1.1 Definition. Simplicial cone.
A proper polyhedral (§2.7.2.2.1) cone K in Rn is called simplicial iff K has exactly n
extreme directions; [21, §II.A] equivalently, iff proper K has exactly n linearly independent
generators contained in any given set of generators. △

� simplicial cone ⇒ proper polyhedral cone

There are an infinite variety of simplicial cones in Rn ; e.g, Figure 27, Figure 58,
Figure 68. Any orthant is simplicial, as is any rotation thereof.

2.12.4 Converting between descriptions

Conversion between halfspace- (285) (286) and vertex-description (86) (288) is nontrivial,
in general, [16] [120, §2.2] but the conversion is easy for simplices. [63, §2.2.4] Nonetheless,
we tacitly assume the two descriptions of polyhedra to be equivalent. [325, §19 thm.19.1]
We explore conversions in §2.13.4, §2.13.9, and §2.13.11:

2.13 Dual cone & generalized inequality
& biorthogonal expansion

These three concepts, dual cone, generalized inequality, and biorthogonal expansion,
are inextricably melded; meaning, it is difficult to completely discuss one without
mentioning the others. The dual cone is critical in tests for convergence by contemporary
primal/dual methods for numerical solution of conic problems. [430] [294, §4.5] For unique
minimum-distance projection on a closed convex cone K , the negative dual cone −K∗

plays the role that orthogonal complement plays for subspace projection.2.57 (§E.9.2,
Figure 181) Indeed, −K∗ is the algebraic complement in Rn ;

K ⊞ −K∗= Rn (2140)

where ⊞ denotes unique orthogonal vector sum.

2.57Namely, projection on a subspace is ascertainable from projection on its orthogonal complement
(Figure 180).
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Figure 58: Two views of a simplicial cone and its dual in R3 (second view on next page).
Semiinfinite boundary of each cone is truncated for illustration. Each cone has three facets
(confer §2.13.11.0.3). (Cartesian axes are drawn for reference.)
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One way to think of a pointed closed convex cone is as a new kind of coordinate
system whose basis is generally nonorthogonal; a conic system, very much like the familiar
Cartesian system whose analogous cone is the first quadrant (the nonnegative orthant).
Generalized inequality ºK is a formalized means to determine membership to any pointed
closed convex cone K (§2.7.2.2) whereas biorthogonal expansion is, fundamentally, an
expression of coordinates in a pointed conic system whose axes are linearly independent
but not necessarily orthogonal. When cone K is the nonnegative orthant, then these
three concepts come into alignment with the Cartesian prototype: biorthogonal expansion
becomes orthogonal expansion, the dual cone becomes identical to the orthant, and
generalized inequality obeys a total order entrywise.

2.13.1 Dual cone

For any set K (convex or not), the dual cone [116, §4.2]

K∗ , {y∈Rn | 〈y , x〉 ≥ 0 for all x∈ K} (296)

is a unique cone2.58 that is always closed and convex because it is an intersection of
halfspaces (§2.4.1.1.1). Each halfspace has inward-normal x , belonging to K , and
boundary containing the origin; e.g, Figure 59a.

When cone K is convex, there is a second and equivalent construction: Dual cone K∗

is the union of each and every vector y inward-normal to a hyperplane supporting K
(§2.4.2.6.1); e.g, Figure 59b. When K is represented by a halfspace-description such as
(286), for example, where

A ,







aT
1
...

aT
m






∈ Rm×n , C ,







cT
1
...

cT
p






∈ Rp×n (297)

then the dual cone can be represented as the conic hull

K∗ = cone{a1 , . . . , am , ±c1 , . . . , ±cp} (298)

a vertex-description, because each and every conic combination of normals from the
halfspace-description of K yields another inward-normal to a hyperplane supporting K .

K∗ can also be constructed pointwise using projection theory from §E.9.2: for PKx
the Euclidean projection of point x on closed convex cone K

−K∗ = {x − PKx | x∈Rn} = {x∈Rn | PKx = 0} (2141)

2.13.1.0.1 Exercise. Manual dual cone construction.
Perhaps the most instructive graphical method of dual cone construction is cut-and-try.
Find the dual of each polyhedral cone from Figure 60 by using dual cone equation (296).

H

2.58The dual cone is the negative polar cone defined by many authors; K∗ = −K◦. [215, §A.3.2] [325, §14]
[42] [27] [347, §2.7]
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0

K
(a)

K∗

K∗

0

K
(b)

y

Figure 59: Two equivalent constructions of dual cone K∗ in R2 : (a) Showing construction
by intersection of halfspaces about 0 (drawn truncated). Only those two halfspaces whose
bounding hyperplanes have inward-normal corresponding to an extreme direction of this
pointed closed convex cone K⊂R2 need be drawn; by (368). (b) Suggesting construction
by union of inward-normals y to each and every hyperplane ∂H+ supporting K . This
interpretation is valid when K is convex because existence of a supporting hyperplane is
then guaranteed (§2.4.2.6).
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0.8
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KK
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R2 R3

∂K∗
∂K∗

(a) (b)

q

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ G(K∗) (365)

Figure 60: Dual cone construction by right angle. Each extreme direction of a proper
polyhedral cone is orthogonal to a facet of its dual cone, and vice versa, in any dimension.
(§2.13.6.1) (a) This characteristic guides graphical construction of dual cone in two
dimensions: It suggests finding dual-cone boundary ∂ by making right angles with extreme
directions of polyhedral cone. The construction is then pruned so that each dual boundary
vector does not exceed π/2 radians in angle with each and every vector from polyhedral
cone. Were dual cone in R2 to narrow, Figure 61 would be reached in limit. (b) Same
polyhedral cone and its dual continued into three dimensions. (confer Figure 68)
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K

K∗

0

Figure 61: Polyhedral cone K is a halfspace about origin in R2. Dual cone K∗ is a ray
base 0, hence not full-dimensional in R2 ; so K cannot be pointed, hence has no extreme
directions. (Both convex cones appear truncated.)

2.13.1.0.2 Exercise. Dual cone definitions.
What is {x∈Rn | xTz≥0 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn} ?
What is {x∈Rn | xTz≥1 ∀ z∈Rn

+} ? H

As defined, dual cone K∗ exists even when the affine hull of the original cone is a proper
subspace; id est, even when the original cone is not full-dimensional.2.59

To further motivate our understanding of the dual cone, consider the ease with which
convergence can be ascertained in the following optimization problem (301p):

2.13.1.0.3 Example. Dual problem. (confer §4.1)
Duality is a powerful and widely employed tool in applied mathematics for a number of
reasons. First, the dual program is always convex even if the primal is not. Second, the
number of variables in the dual is equal to the number of constraints in the primal which is
often less than the number of variables in the primal program. Third, the maximum value
achieved by the dual problem is often equal to the minimum of the primal. [317, §2.1.3]
When not equal, the dual always provides a bound on the primal optimal objective. For
convex problems, the dual variables provide necessary and sufficient optimality conditions:

2.59Rockafellar formulates dimension of K and K∗. [325, §14.6.1] His monumental work Convex Analysis
has not one figure or illustration. See [27, §II.16] for illustration of Rockafellar’s recession cone [43].

http://www.convexoptimization.com/wikimization/index.php/Rockafellar
http://www.convexoptimization.com/TOOLS/ConvexAnalysis.pdf
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f(xp , z) or g(z)

f(x , zp) or f(x)

x
z

Figure 62: (Drawing by Lucas V. Barbosa.) This serves as mnemonic icon for primal and
dual problems, although objective functions from conic problems (301p) (301d) are
linear. When problems are strong duals, duality gap is 0 ; meaning, functions f(x) , g(z)
(dotted) kiss at saddle value as depicted at center. Otherwise, dual functions never meet
(f(x) > g(z)) by (299).

http://commons.wikimedia.org/wiki/File:Saddle_point.png
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Essentially, Lagrange duality theory concerns representation of a given optimization
problem as half of a minimax problem. [325, §36] [63, §5.4] Given any real function f(x, z)

minimize
x

maximize
z

f(x, z) ≥ maximize
z

minimize
x

f(x, z) (299)

always holds. When

minimize
x

maximize
z

f(x, z) = maximize
z

minimize
x

f(x, z) (300)

we have strong duality and then a saddle value [166] exists. (Figure 62) [322, p.3] Consider
primal conic problem (p) (over cone K) and its corresponding dual problem (d): [311, §3.3.1]
[255, §2.1] [256] given vectors α , β and matrix constant C

(p)

minimize
x

αTx

subject to x ∈ K
Cx = β

maximize
y , z

βTz

subject to y ∈ K∗

CTz + y = α

(d) (301)

Observe: the dual problem is also conic, and its objective function value never exceeds
that of the primal;

αTx ≥ βTz

xT(CTz + y) ≥ (Cx)Tz

xTy ≥ 0

(302)

which holds by definition (296). Under the sufficient condition that (301p) is a convex
problem2.60 satisfying Slater’s condition (p.249), then equality

x⋆Ty⋆ = 0 (303)

is achieved; which is necessary and sufficient for optimality (§2.13.10.1.5); each problem
(p) and (d) attains the same optimal value of its objective and each problem is called a
strong dual to the other because the duality gap (optimal primal−dual objective difference)
becomes 0. Then (p) and (d) are together equivalent to the minimax problem

minimize
x,y,z

αTx − βTz

subject to x ∈ K , y ∈ K∗

Cx = β , CTz + y = α

(p)−(d) (304)

whose optimal objective always has the saddle value 0 (regardless of the particular convex
cone K and other problem parameters). [378, §3.2] Thus determination of convergence for
either primal or dual problem is facilitated.

Were convex cone K polyhedral (§2.12.1), then problems (p) and (d) would be linear
programs. Selfdual nonnegative orthant K yields the primal prototypical linear program
and its dual. Were K a positive semidefinite cone, then problem (p) has the form of
prototypical semidefinite program (687) with (d) its dual. It is sometimes possible to solve
a primal problem by way of its dual; advantageous when the dual problem is easier to solve
than the primal problem, for example, because it can be solved analytically, or has some
special structure that can be exploited. [63, §5.5.5] (§4.2.3.1) 2

2.60In this context, problems (p) and (d) are convex if K is a convex cone.
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2.13.1.1 Key properties of dual cone

� For any cone, (−K)
∗

= −K∗

� For any cones K1 and K2 , K1 ⊆ K2 ⇒ K∗
1 ⊇ K∗

2 [347, §2.7]

� (Cartesian product) For closed convex cones K1 and K2 , their Cartesian product
K = K1 × K2 is a closed convex cone, and

K∗ = K∗
1 × K∗

2 (305)

where each dual is determined with respect to a cone’s ambient space.

� (conjugation) [325, §14] [116, §4.5] [347, p.52] When K is any convex cone, dual of
the dual cone equals closure of the original cone;

K∗∗ = K (306)

is the intersection of all halfspaces about the origin that contain K . Because
K∗∗∗= K∗ always holds,

K∗ = (K)
∗

(307)

When convex cone K is closed, then dual of the dual cone is the original cone;
K∗∗= K ⇔ K is a closed convex cone: [347, p.53, p.95]

K = {x∈Rn | 〈y , x〉 ≥ 0 ∀ y∈ K∗} (308)

� If any cone K is full-dimensional, then K∗ is pointed;

K full-dimensional ⇒ K∗ pointed (309)

If the closure of any convex cone K is pointed, conversely, then K∗ is full-dimensional;

K pointed ⇒ K∗ full-dimensional (310)

Given that a cone K⊂Rn is closed and convex, K is pointed if and only if
K∗−K∗= Rn ; id est, iff K∗ is full-dimensional. [56, §3.3 exer.20]

� (vector sum) [325, thm.3.8] For convex cones K1 and K2

K1 + K2 = conv(K1 ∪ K2) (311)

is a convex cone.

� (dual vector-sum) [325, §16.4.2] [116, §4.6] For convex cones K1 and K2

K∗
1 ∩ K∗

2 = (K1 + K2)
∗

= (K1 ∪ K2)
∗

(312)
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� (closure of vector sum of duals)2.61 For closed convex cones K1 and K2

(K1 ∩ K2)
∗

= K∗
1 + K∗

2 = conv(K∗
1 ∪ K∗

2) (313)

[347, p.96] where operation closure becomes superfluous under the sufficient
condition K1 ∩ intK2 6= ∅ [56, §3.3 exer.16, §4.1 exer.7].

� (Krein-Rutman) Given closed convex cones K1⊆ Rm and K2⊆Rn and any linear
map A : Rn→Rm, then provided intK1 ∩ AK2 6= ∅ [56, §3.3.13, confer §4.1 exer.9]

(A−1K1 ∩ K2)
∗

= ATK∗
1 + K∗

2 (314)

where dual of cone K1 is with respect to its ambient space Rm and dual of cone K2

is with respect to Rn, where A−1K1 denotes inverse image (§2.1.9.0.1) of K1 under
mapping A , and where AT denotes adjoint operator. The particularly important
case K2 = Rn is easy to show: for ATA = I

(ATK1)
∗

, {y∈Rn | xTy ≥ 0 ∀x∈ATK1}
= {y∈Rn | (ATz)Ty ≥ 0 ∀ z∈K1}
= {ATw | zTw ≥ 0 ∀ z∈K1}
= ATK∗

1

(315)

� K is proper if and only if K∗ is proper.

� K is polyhedral if and only if K∗ is polyhedral. [347, §2.8]

� K is simplicial if and only if K∗ is simplicial. (§2.13.9.2) A simplicial cone and its
dual are proper polyhedral cones (Figure 68, Figure 58), but not the converse.

� K ⊞ −K∗= Rn ⇔ K is closed and convex. (2140)

� Any direction in a proper cone K is normal to a hyperplane separating K from −K∗.

2.13.1.2 Examples of dual cone

When K is Rn, K∗ is the point at the origin, and vice versa.
When K is a subspace, K∗ is its orthogonal complement, and vice versa. (§E.9.2.1,

Figure 63)
When cone K is a halfspace in Rn with n> 0 (Figure 61 for example), the dual cone

K∗ is a ray (base 0) belonging to that halfspace but orthogonal to its bounding hyperplane
(that contains the origin), and vice versa.

2.61These parallel analogous results for subspaces R1 ,R2⊆R
n ; [116, §4.6]

(R1+ R2)⊥ = R⊥
1 ∩R⊥

2

(R1∩R2)⊥ = R⊥
1 + R⊥

2

R⊥⊥=R for any subspace R .
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K∗

K

0

K∗

K
0

R3

R2

Figure 63: When convex cone K is any one Cartesian axis, its dual cone is the convex hull
of all axes remaining; its orthogonal complement. In R3, dual cone K∗ (drawn tiled and
truncated) is a hyperplane through origin; its normal belongs to line K . In R2, dual cone
K∗ is a line through origin while convex cone K is that line orthogonal.
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When convex cone K is a closed halfplane in R3 (Figure 64), it is neither pointed or
full-dimensional; hence, the dual cone K∗ can be neither full-dimensional or pointed.

When K is any particular orthant in Rn, the dual cone is identical; id est, K=K∗.
When K is any quadrant in subspace R2, K∗ is a wedge-shaped polyhedral cone in

R3 ; e.g, for K equal to quadrant I , K∗=

[

R2

+

R

]

.

When K is a polyhedral flavor Lorentz cone (confer (178))

Kℓ =

{[

x
t

]

∈ Rn× R | ‖x‖ℓ ≤ t

}

, ℓ∈{1, ∞} (316)

its dual is the proper cone [63, exmp.2.25]

Kq = K∗
ℓ =

{[

x
t

]

∈ Rn× R | ‖x‖q ≤ t

}

, ℓ∈{1, 2, ∞} (317)

where ‖x‖∗ℓ = ‖x‖q is that norm dual to ‖x‖ℓ determined via solution to 1/ℓ + 1/q = 1 .2.62

Figure 66 illustrates K=K1 and K∗=K∗
1 =K∞ in R2× R .

2.13.2 Abstractions of Farkas’ lemma

2.13.2.0.1 Corollary. Generalized inequality and membership relation. [215, §A.4.2]
Let K be any closed convex cone and K∗ its dual, and let x and y belong to a vector
space Rn. Then

y ∈ K∗ ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (318)

which is, merely, a statement of fact by definition of dual cone (296). By closure we have
conjugation: [325, thm.14.1]

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (319)

which may be regarded as a simple translation of Farkas’ lemma [144] as in [325, §22] to
the language of convex cones, and a generalization of the well-known Cartesian cone fact

x º 0 ⇔ 〈y , x〉 ≥ 0 for all y º 0 (320)

for which implicitly K = K∗ = Rn
+ the nonnegative orthant.

Membership relation (319) is often written instead as dual generalized inequalities,
when K and K∗ are pointed closed convex cones,

x º
K

0 ⇔ 〈y , x〉 ≥ 0 for all y º
K∗

0 (321)

meaning, coordinates for biorthogonal expansion of x (§2.13.7.1.2, §2.13.8) [384] must be
nonnegative when x belongs to K . Conjugating,

y º
K∗

0 ⇔ 〈y , x〉 ≥ 0 for all x º
K

0 (322)

⋄
2.62Dual norm is not a conjugate or dual function.
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K

K∗

Figure 64: K and K∗ are halfplanes in R3 ; blades. Both semiinfinite convex cones
appear truncated. Each cone is like K from Figure 61 but embedded in a two-dimensional
subspace of R3. (Cartesian coordinate axes drawn for reference.)
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When pointed closed convex cone K is not polyhedral, coordinate axes for biorthogonal
expansion asserted by the corollary are taken from extreme directions of K ; expansion is
assured by Carathéodory’s theorem (§E.6.4.1.1).

We presume, throughout, the obvious:

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗ (319)
⇔

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y ∈ K∗, ‖y‖= 1
(323)

2.13.2.0.2 Exercise. Dual generalized inequalities.
Test Corollary 2.13.2.0.1 and (323) graphically on the two-dimensional polyhedral cone
and its dual in Figure 60. H

(confer §2.7.2.2) When pointed closed convex cone K is implicit from context:

x º 0 ⇔ x ∈ K
x ≻ 0 ⇔ x ∈ rel intK (324)

Strict inequality x≻ 0 means coordinates for biorthogonal expansion of x must be positive
when x belongs to rel intK . Strict membership relations are useful; e.g, for any proper
cone2.63 K and its dual K∗

x ∈ intK ⇔ 〈y , x〉 > 0 for all y ∈ K∗, y 6= 0 (325)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intK∗ (326)

Conjugating, we get the dual relations:

y ∈ intK∗ ⇔ 〈y , x〉 > 0 for all x ∈ K , x 6= 0 (327)

y ∈ K∗, y 6= 0 ⇔ 〈y , x〉 > 0 for all x ∈ intK (328)

Boundary-membership relations for proper cones are also useful:

x ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , x〉 = 0 , y ∈ K∗, x ∈ K (329)

y ∈ ∂K∗ ⇔ ∃ x 6= 0 Ä 〈y , x〉 = 0 , x ∈ K , y ∈ K∗ (330)

which are consistent; e.g, x∈ ∂K ⇔ x /∈ intK and x∈K .

2.13.2.0.3 Example. Linear inequality. [354, §4] (confer §2.13.5.1.1)
Consider a given matrix A and closed convex cone K . By membership relation we have

Ay ∈ K∗ ⇔ xTA y≥ 0 ∀x ∈ K
⇔ yTz≥ 0 ∀ z ∈ {ATx | x ∈ K}
⇔ y ∈ {ATx | x ∈ K}∗

(331)

This implies

{y | Ay ∈ K∗} = {ATx | x ∈ K}∗ (332)

2.63An open cone K is admitted to (325) and (328) by (19).
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When K is the selfdual nonnegative orthant (§2.13.5.1), for example, then

{y | Ay º 0} = {ATx | x º 0}∗ (333)

and the dual relation
{y | Ay º 0}∗ = {ATx | x º 0} (334)

comes by a theorem of Weyl (p.128) that yields closedness for any vertex-description of a
polyhedral cone. 2

2.13.2.1 Null certificate, Theorem of the alternative

If in particular xp /∈K a closed convex cone, then construction in Figure 59b suggests
there exists a supporting hyperplane (having inward-normal belonging to dual cone K∗)
separating xp from K ; indeed, (319)

xp /∈ K ⇔ ∃ y ∈ K∗ Ä 〈y , xp〉 < 0 (335)

Existence of any one such y is a certificate of null membership. From a different
perspective,

xp ∈ K
or in the alternative

∃ y ∈ K∗ Ä 〈y , xp〉 < 0

(336)

By alternative is meant: these two systems are incompatible; one system is feasible while
the other is not.

2.13.2.1.1 Example. Theorem of the alternative for linear inequality.
Myriad alternative systems of linear inequality can be explained in terms of pointed closed
convex cones and their duals.

Beginning from the simplest Cartesian dual generalized inequalities (320) (with respect
to nonnegative orthant Rm

+ ),

y º 0 ⇔ xTy ≥ 0 for all x º 0 (337)

Given A∈Rn×m, we make vector substitution y ← ATy

ATy º 0 ⇔ xTATy ≥ 0 for all x º 0 (338)

Introducing a new vector by calculating b , Ax we get

ATy º 0 ⇔ bTy ≥ 0 , b = Ax for all x º 0 (339)

By complementing sense of the scalar inequality:

ATy º 0

or in the alternative

bTy < 0 , ∃ b = Ax , x º 0

(340)
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If one system has a solution, then the other does not; define a convex cone
K={y | ATyº 0} , then y ∈ K or in the alternative y /∈ K .

Scalar inequality bTy< 0 is movable to the other side of alternative (340), but
that requires some explanation: From results in Example 2.13.2.0.3, the dual cone is
K∗={Ax | xº 0}. From (319) we have

y ∈ K ⇔ bTy ≥ 0 for all b ∈ K∗

ATy º 0 ⇔ bTy ≥ 0 for all b ∈ {Ax | xº 0} (341)

Given some b vector and y ∈ K , then bTy< 0 can only mean b /∈ K∗. An alternative
system is therefore simply b ∈ K∗: [215, p.59] (Farkas/Tucker)

ATy º 0 , bTy < 0

or in the alternative

b = Ax , x º 0

(342)

Geometrically this means: either vector b belongs to convex cone K∗ or it does not.
When b /∈K∗, then there is a vector y∈K normal to a hyperplane separating point b
from cone K∗.

For another example, from membership relation (318) with affine transformation of
dual variable we may write: Given A∈Rn×m and b∈Rn

b − Ay ∈ K∗ ⇔ xT(b − Ay)≥ 0 ∀x ∈ K (343)

ATx=0 , b − Ay ∈ K∗ ⇒ xTb≥ 0 ∀x ∈ K (344)

From membership relation (343), conversely, suppose we allow any y∈Rm. Then because
−xTA y is unbounded below, xT(b−Ay)≥ 0 implies ATx=0 : for y∈Rm

ATx=0 , b − Ay ∈ K∗ ⇐ xT(b − Ay)≥ 0 ∀x ∈ K (345)

In toto,

b − Ay ∈ K∗ ⇔ xTb≥ 0 , ATx=0 ∀x ∈ K (346)

Vector x belongs to cone K but is also constrained to lie in a subspace of Rn specified by an
intersection of hyperplanes through the origin {x∈Rn |ATx=0}. From this, alternative
systems of generalized inequality with respect to pointed closed convex cones K and K∗

Ay ¹
K∗

b

or in the alternative

xTb < 0 , ATx=0 , x º
K

0

(347)

derived from (346) simply by taking the complementary sense of the inequality in xTb .
These two systems are alternatives; if one system has a solution, then the other does
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not.2.64 [325, p.201]
By invoking a strict membership relation between proper cones (325), we can construct

a more exotic alternative strengthened by demand for an interior point;

b − Ay ≻
K∗

0 ⇔ xTb > 0 , ATx=0 ∀x º
K

0 , x 6= 0 (348)

From this, alternative systems of generalized inequality [63, pp.50,54,262]

Ay ≺
K∗

b

or in the alternative

xTb≤ 0 , ATx=0 , x º
K

0 , x 6= 0

(349)

derived from (348) by taking complementary sense of the inequality in xTb .
And from this, alternative systems with respect to the nonnegative orthant attributed

to Gordan in 1873: [175] [56, §2.2] substituting A←AT and setting b = 0

ATy ≺ 0

or in the alternative

Ax = 0 , x º 0 , ‖x‖1 = 1

(350)

Ben-Israel collects related results from Farkas, Motzkin, Gordan, and Stiemke in
Motzkin transposition theorem. [34] 2

2.13.3 Optimality condition

(confer §2.13.10.1) The general first-order necessary and sufficient condition for optimality
of solution x⋆ to a minimization problem ((301p) for example) with real differentiable
convex objective function f(x) : Rn→R is [324, §3]

∇f(x⋆)T(x − x⋆) ≥ 0 ∀x∈ C , x⋆∈ C (351)

where C is a convex feasible set,2.65 and where ∇f(x⋆) is the gradient (§3.6) of f with
respect to x evaluated at x⋆. In words, negative gradient is normal to a hyperplane
supporting the feasible set at a point of optimality. (Figure 71)

2.64If solutions at ±∞ are disallowed, then the alternative systems become instead mutually exclusive
with respect to nonpolyhedral cones. Simultaneous infeasibility of the two systems is not precluded by
mutual exclusivity; called a weak alternative. Ye provides an example illustrating simultaneous infeasibility

with respect to the positive semidefinite cone: x∈ S
2, y∈R , A =

[

1 0
0 0

]

, and b =

[

0 1
1 0

]

where

xTb means 〈x , b〉 . A better strategy than disallowing solutions at ±∞ is to demand an interior point
as in (349) or Lemma 4.2.1.1.2. Then question of simultaneous infeasibility is moot.
2.65 presumably nonempty set of all variable values satisfying all given problem constraints; the set of
feasible solutions.

http://www.encyclopediaofmath.org/index.php/Motzkin_transposition_theorem
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Direct solution to variation inequality (351), instead of the corresponding minimization,
spawned from calculus of variations. [266, p.178] [143, p.37] One solution method solves
an equivalent fixed point-of-projection problem

x = PC(x −∇f(x)) (352)

that follows from a necessary and sufficient condition for projection on convex set C
(Theorem E.9.1.0.2)

P (x⋆−∇f(x⋆)) ∈ C , 〈x⋆−∇f(x⋆) − x⋆, x − x⋆〉 ≤ 0 ∀x ∈ C (2125)

Proof of equivalence [388, Complementarity problem] is provided by Németh. Given
minimum-distance projection problem

minimize
x

1
2‖x − y‖2

subject to x ∈ C (353)

on convex feasible set C for example, the equivalent fixed point problem

x = PC(x −∇f(x)) = PC(y) (354)

is solved in one step.
In the unconstrained case (C= Rn), optimality condition (351) reduces to the classical

rule (p.212)
∇f(x⋆) = 0 , x⋆∈ dom f (355)

which can be inferred from the following application:

2.13.3.0.1 Example. Optimality for equality constrained problem.
Given a real differentiable convex function f(x) : Rn→R defined on domain Rn, a fat
full-rank matrix C∈Rp×n, and vector d∈Rp, the convex optimization problem

minimize
x

f(x)

subject to Cx = d
(356)

is characterized by the well-known necessary and sufficient optimality condition [63, §4.2.3]

∇f(x⋆) + CTν = 0 (357)

where ν∈Rp is the eminent Lagrange multiplier. [323] [266, p.188] [245] In other words,
solution x⋆ is optimal if and only if ∇f(x⋆) belongs to R(CT).

Via membership relation, we now derive condition (357) from the general first-order
condition for optimality (351): For problem (356)

C , {x∈Rn | Cx = d} = {Zξ + xp | ξ∈Rn−rank C} (358)

is the feasible set where Z∈Rn×n−rank C holds basisN (C ) columnar, and xp is any
particular solution to Cx = d . Since x⋆∈ C , we arbitrarily choose xp = x⋆ which yields
an equivalent optimality condition

∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (359)
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when substituted into (351). But this is simply half of a membership relation where the
cone dual to Rn−rank C is the origin in Rn−rank C . We must therefore have

ZT∇f(x⋆) = 0 ⇔ ∇f(x⋆)TZξ ≥ 0 ∀ ξ∈Rn−rank C (360)

meaning, ∇f(x⋆) must be orthogonal to N (C ). These conditions

ZT∇f(x⋆) = 0 , Cx⋆ = d (361)

are necessary and sufficient for optimality. 2

2.13.4 Discretization of membership relation

2.13.4.1 Dual halfspace-description

Halfspace-description of dual cone K∗ is equally simple as vertex-description

K = cone(X) = {Xa | a º 0} ⊆ Rn (103)

for corresponding closed convex cone K : By definition (296), for X∈ Rn×N as in (279),
(confer (286))

K∗ =
{

y∈Rn | zTy ≥ 0 for all z∈ K
}

=
{

y∈Rn | zTy ≥ 0 for all z = Xa , a º 0
}

=
{

y∈Rn | aTXTy ≥ 0 , a º 0
}

=
{

y∈Rn | XTy º 0
}

(362)

that follows from the generalized inequality and membership corollary (320). The
semi-infinity of tests specified by all z∈K has been reduced to a set of generators for K
constituting the columns of X ; id est, the test has been discretized.

Whenever cone K is known to be closed and convex, the conjugate statement must
also hold; id est, given any set of generators for dual cone K∗ arranged columnar in Y ,
then the consequent vertex-description of dual cone connotes a halfspace-description for
K : [347, §2.8]

K∗ = {Y a | a º 0} ⇔ K∗∗= K =
{

z | Y Tz º 0
}

(363)

2.13.4.2 First dual-cone formula

From these two results (362) and (363) we deduce a general principle:

� From any [sic ] given vertex-description (103) of closed convex cone K , a
halfspace-description of the dual cone K∗ is immediate by matrix transposition
(362); conversely, from any given halfspace-description (286) of K , a dual
vertex-description is immediate (363). [325, p.122]

Various other converses are just a little trickier. (§2.13.9, §2.13.11)
We deduce further: For any polyhedral cone K , the dual cone K∗ is also polyhedral

and K∗∗= K . [347, p.56]
The generalized inequality and membership corollary is discretized in the following

theorem inspired by (362) and (363):
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2.13.4.2.1 Theorem. Discretized membership. (confer §2.13.2.0.1)2.66

Given any set of generators, (§2.8.1.2) denoted by G(K) for closed convex cone K⊆Rn,
and any set of generators denoted G(K∗) for its dual such that

K = coneG(K) , K∗= coneG(K∗) (364)

then discretization of the generalized inequality and membership corollary (p.144) is
necessary and sufficient for certifying cone membership: for x and y in vector space Rn

x ∈ K ⇔ 〈γ∗, x〉 ≥ 0 for all γ∗∈ G(K∗) (365)

y ∈ K∗ ⇔ 〈γ , y〉 ≥ 0 for all γ ∈ G(K) (366)

⋄

Proof. K∗= {G(K∗)a | aº 0}. y∈K∗⇔ y=G(K∗)a for some aº 0.
x∈K ⇔ 〈y , x〉≥ 0 ∀ y∈K∗⇔ 〈G(K∗)a , x〉≥ 0 ∀ aº 0 (319). a,

∑

i αi ei where ei is the
ith member of a standard basis of possibly infinite cardinality. 〈G(K∗)a , x〉≥ 0 ∀ aº 0
⇔ ∑

i αi〈G(K∗)ei , x〉≥ 0 ∀αi ≥ 0 ⇔ 〈G(K∗)ei , x〉≥ 0 ∀ i . Conjugate relation (366) is
similarly derived. ¨

2.13.4.2.2 Exercise. Discretized dual generalized inequalities.
Test Theorem 2.13.4.2.1 on Figure 60a using extreme directions there as generators.

H

From the discretized membership theorem we may further deduce a more surgical
description of closed convex cone that prescribes only a finite number of halfspaces for
its construction when polyhedral: (Figure 59a)

K = {x∈Rn | 〈γ∗, x〉 ≥ 0 for all γ∗∈ G(K∗)} (367)

K∗ = {y∈Rn | 〈γ , y〉 ≥ 0 for all γ∈ G(K)} (368)

2.13.4.2.3 Exercise. Partial order induced by orthant.
When comparison is with respect to the nonnegative orthant K= Rn

+ , then from the
discretized membership theorem it directly follows:

x ¹ z ⇔ xi ≤ zi ∀ i (369)

Generate simple counterexamples demonstrating that this equivalence with entrywise
inequality holds only when the underlying cone inducing partial order is the nonnegative
orthant; e.g, explain Figure 65. H

2.66Stated in [22, §1] without proof for pointed closed convex case.
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K
x

Figure 65: xº 0 with respect to K but not with respect to nonnegative orthant R2

+

(pointed convex cone K drawn truncated).

2.13.4.2.4 Example. Boundary membership to proper polyhedral cone.
For a polyhedral cone, test (329) of boundary membership can be formulated as a linear
program. Say proper polyhedral cone K is specified completely by generators that are
arranged columnar in

X = [ Γ1 · · · ΓN ] ∈ Rn×N (279)

id est, K = {Xa | a º 0}. Then membership relation

c ∈ ∂K ⇔ ∃ y 6= 0 Ä 〈y , c〉 = 0 , y ∈ K∗, c ∈ K (329)

may be expressed2.67

find
a , y

y 6= 0

subject to cTy = 0
XTy º 0
Xa = c
a º 0

(370)

This linear feasibility problem has a solution iff c∈∂K . 2

2.13.4.3 smallest face of pointed closed convex cone

Given nonempty convex subset C of a convex set K , the smallest face of K containing
C is equivalent to intersection of all faces of K that contain C . [325, p.164] By (308),
membership relation (329) means that each and every point on boundary ∂K of proper
cone K belongs to a hyperplane supporting K whose normal y belongs to dual cone K∗.
It follows that the smallest face F , containing C ⊂ ∂K⊂Rn on boundary of proper cone
K , is the intersection of all hyperplanes containing C whose normals are in K∗ ;

F(K⊃C) = {x∈ K | x ⊥ K∗∩ C⊥} (371)

2.67Nonzero y∈R
n may be realized in many ways; e.g, via constraint 1Ty=1 if c 6=1.
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where
C⊥ , {y∈Rn | 〈z , y〉=0 ∀ z∈ C} (372)

When C ∩ intK 6= ∅ then F(K⊃C)=K .

2.13.4.3.1 Example. Finding smallest face of cone.
Suppose polyhedral cone K is completely specified by generators arranged columnar in

X = [ Γ1 · · · ΓN ] ∈ Rn×N (279)

To find its smallest face F(K∋ c) containing a given point c∈K , by the discretized
membership theorem 2.13.4.2.1, it is necessary and sufficient to find generators for the
smallest face. We may do so one generator at a time:2.68 Consider generator Γi . If
there exists a vector z∈K∗ orthogonal to c but not to Γi , then Γi cannot belong to the
smallest face of K containing c . Such a vector z can be realized by a linear feasibility
problem:

find z∈Rn

subject to cTz = 0
XTz º 0
ΓT

i z = 1

(373)

If there exists a solution z for which ΓT
i z=1, then

Γi 6⊥ K∗∩ c⊥ = {z∈Rn | XTzº 0 , cTz=0} (374)

so Γi /∈ F(K∋ c) ; solution z is a certificate of null membership. If this problem is
infeasible for generator Γi∈K , conversely, then Γi ∈ F(K∋ c) by (371) and (362) because
Γi ⊥ K∗∩ c⊥ ; in that case, Γi is a generator of F(K∋ c).

Since the constant in constraint ΓT
i z =1 is arbitrary positively, then by theorem of

the alternative there is correspondence between (373) and (347) admitting the alternative
linear problem: for a given point c∈K

find
a∈RN , µ∈R

a , µ

subject to µc − Γi = Xa
a º 0

(375)

Now if this problem is feasible (bounded) for generator Γi∈K , then (373) is infeasible
and Γi ∈ F(K∋ c) is a generator of the smallest face that contains c . 2

2.13.4.3.2 Exercise. Finding smallest face of pointed closed convex cone.
Show that formula (371) and algorithms (373) and (375) apply more broadly; id est, a
full-dimensional cone K is an unnecessary condition.2.69 H

2.13.4.3.3 Exercise. Smallest face of positive semidefinite cone.
Derive (221) from (371). H

2.68When finding a smallest face, generators of K in matrix X may not be diminished in number (by
discarding columns) until all generators of the smallest face have been found.
2.69Hint: A hyperplane, with normal in K∗, containing cone K is admissible.
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2.13.5 Dual PSD cone and generalized inequality

The dual positive semidefinite cone K∗ is confined to SM by convention;

SM ∗
+ , {Y ∈ SM | 〈Y , X 〉 ≥ 0 for all X∈ SM

+ } = SM
+ (376)

The positive semidefinite cone is selfdual in the ambient space of symmetric matrices
[63, exmp.2.24] [40] [211, §II ]; K=K∗.

Dual generalized inequalities with respect to the positive semidefinite cone in the
ambient space of symmetric matrices can therefore be simply stated: (Fejér)

X º 0 ⇔ tr(Y TX) ≥ 0 for all Y º 0 (377)

Membership to this cone can be determined in the isometrically isomorphic Euclidean

space RM 2

via (38). (§2.2.1) By the two interpretations in §2.13.1, positive semidefinite
matrix Y can be interpreted as inward-normal to a hyperplane supporting the positive
semidefinite cone.

The fundamental statement of positive semidefiniteness, yTXy≥0 ∀ y (§A.3.0.0.1),
evokes a particular instance of these dual generalized inequalities (377):

X º 0 ⇔ 〈yyT, X 〉 ≥ 0 ∀ yyT(º 0) (1531)

Discretization (§2.13.4.2.1) allows replacement of positive semidefinite matrices Y with
this minimal set of generators comprising the extreme directions of the positive semidefinite
cone (§2.9.2.7).

2.13.5.1 selfdual cones

From (131) (a consequence of the halfspaces theorem, §2.4.1.1.1), where the only finite
value of the support function for a convex cone is 0 [215, §C.2.3.1], or from discretized
definition (368) of the dual cone we get a rather self evident characterization of selfdual
cones:

K = K∗ ⇔ K =
⋂

γ∈G(K)

{

y | γTy ≥ 0
}

(378)

In words: Cone K is selfdual iff its own extreme directions are inward-normals to a
(minimal) set of hyperplanes bounding halfspaces whose intersection constructs it. This
means each extreme direction of K is normal to a hyperplane exposing one of its own
faces; a necessary but insufficient condition for selfdualness (Figure 66, for example).

Selfdual cones are necessarily full-dimensional. [31, §I] Their most prominent
representatives are the orthants (Cartesian cones), the positive semidefinite cone SM

+

in the ambient space of symmetric matrices (376), and Lorentz cone (178) [21, §II.A]
[63, exmp.2.25]. In three dimensions, a plane containing the axis of revolution of a selfdual
cone (and the origin) will produce a slice whose boundary makes a right angle.
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K

0 ∂K∗

K

∂K∗

(a)

(b)

Figure 66: Two (truncated) views of a polyhedral cone K and its dual in R3. Each of
four extreme directions from K belongs to a face of dual cone K∗. Cone K , shrouded by
its dual, is symmetrical about its axis of revolution. Each pair of diametrically opposed
extreme directions from K makes a right angle. An orthant (or any rotation thereof;
a simplicial cone) is not the only selfdual polyhedral cone in three or more dimensions;
[21, §2.A.21] e.g, consider an equilateral having five extreme directions. In fact, every
selfdual polyhedral cone in R3 has an odd number of extreme directions. [23, thm.3]



2.13. DUAL CONE & GENERALIZED INEQUALITY 157

2.13.5.1.1 Example. Linear matrix inequality. (confer §2.13.2.0.3)
Consider a peculiar vertex-description for a convex cone K defined over a positive
semidefinite cone (instead of a nonnegative orthant as in definition (103)): for X ∈ Sn

+

given Aj ∈ Sn, j =1 . . . m

K =











〈A1 , X 〉
...

〈Am , X 〉



 | Xº 0







⊆ Rm

=











svec(A1)
T

...
svec(Am)T



svec X | Xº 0







, {A svec X | Xº 0}

(379)

where A∈Rm×n(n+1)/2, and where symmetric vectorization svec is defined in (56). Cone
K is indeed convex because, by (175)

A svec Xp1
, A svec Xp2

∈ K ⇒ A(ζ svec Xp1
+ ξ svec Xp2

)∈K for all ζ , ξ ≥ 0 (380)

since a nonnegatively weighted sum of positive semidefinite matrices must be positive
semidefinite. (§A.3.1.0.2) Although matrix A is finite-dimensional, K is generally not a
polyhedral cone (unless m=1or 2) simply because X∈ Sn

+ .

Theorem. Inverse image closedness. [215, prop.A.2.1.12] [325, thm.6.7]
Given affine operator g : Rm→Rp, convex set D⊆Rm, and convex set C ⊆Rp Ä
g−1(rel int C) 6= ∅ , then

rel int g(D)= g(rel intD) , rel int g−1C= g−1(rel int C) , g−1C= g−1C (381)

⋄

By this theorem, relative interior of K may always be expressed

rel intK = {A svec X | X≻ 0} (382)

Because dim(aff K)=dim(A svec Sn) (127) then, provided the vectorized Aj matrices are
linearly independent,

rel intK = intK (14)

meaning, cone K is full-dimensional ⇒ dual cone K∗ is pointed by (309). Convex cone K
can be closed, by this corollary:

Corollary. Cone closedness invariance. [57, §3] [58, §3]
Given linear operator A : Rp→Rm and closed convex cone X ⊆Rp, convex cone

K= A(X ) is closed
(

A(X ) = A(X )
)

if and only if

N (A) ∩ X = {0} or N (A) ∩ X * rel ∂X (383)

Otherwise, K = A(X ) ⊇ A(X ) ⊇ A(X ). [325, thm.6.6] ⋄
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If matrix A has no nontrivial nullspace, then A svec X is an isomorphism in X between
cone Sn

+ and range R(A) of matrix A ; (§2.2.1.0.1, §2.10.1.1) sufficient for convex cone K
to be closed and have relative boundary

rel ∂K = {A svec X | Xº 0 , X ⊁ 0} (384)

Now consider the (closed convex) dual cone:

K∗ = {y | 〈z , y〉 ≥ 0 for all z∈K} ⊆ Rm

= {y | 〈z , y〉 ≥ 0 for all z = A svec X , Xº 0}
= {y | 〈A svec X , y〉 ≥ 0 for all Xº 0}
=

{

y | 〈svec X , ATy〉 ≥ 0 for all Xº 0
}

=
{

y | svec−1(ATy) º 0
}

(385)

that follows from (377) and leads to an equally peculiar halfspace-description

K∗ = {y∈Rm |
m

∑

j=1

yjAj º 0} (386)

The summation inequality with respect to positive semidefinite cone Sn
+ is known as linear

matrix inequality. [61] [165] [278] [381] Although we already know that the dual cone is
convex (§2.13.1), inverse image theorem 2.1.9.0.1 certifies convexity of K∗ which is the
inverse image of positive semidefinite cone Sn

+ under linear transformation g(y),
∑

yjAj .
And although we already know that the dual cone is closed, it is certified by (381). By
the inverse image closedness theorem, dual cone relative interior may always be expressed

rel intK∗ = {y∈Rm |
m

∑

j=1

yjAj ≻ 0} (387)

Function g(y) on Rm is an isomorphism when the vectorized Aj matrices are linearly
independent; hence, uniquely invertible. Inverse image K∗ must therefore have dimension
equal to dim

(

R(AT)∩ svec Sn
+

)

(49) and relative boundary

rel ∂K∗ = {y∈Rm |
m

∑

j=1

yjAj º 0 ,

m
∑

j=1

yjAj ⊁ 0} (388)

When this dimension equals m , then dual cone K∗ is full-dimensional

rel intK∗ = intK∗ (14)

which implies: closure of convex cone K is pointed (309). 2

2.13.6 Dual of pointed polyhedral cone

In a subspace of Rn, now we consider a pointed polyhedral cone K given in terms of its
extreme directions Γi arranged columnar in

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (279)

The extremes theorem (§2.8.1.1.1) provides the vertex-description of a pointed polyhedral
cone in terms of its finite number of extreme directions and its lone vertex at the origin:
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2.13.6.0.1 Definition. Pointed polyhedral cone, vertex-description.
Given pointed polyhedral cone K in a subspace of Rn, denoting its ith extreme direction
by Γi∈Rn arranged in a matrix X as in (279), then that cone may be described: (86)
(confer (188) (292))

K =
{

[0 X ] a ζ | aT1 = 1, a º 0, ζ ≥ 0
}

=
{

Xa ζ | aT1 ≤ 1, a º 0, ζ ≥ 0
}

=
{

Xb | b º 0
}

⊆ Rn
(389)

that is simply a conic hull (like (103)) of a finite number N of directions. Relative interior
may always be expressed

rel intK = {Xb | b ≻ 0} ⊂ Rn (390)

but identifying the cone’s relative boundary in this manner

rel ∂K = {Xb | b º 0 , b ⊁ 0} (391)

holds only when matrix X represents a bijection onto its range; in other words, some
coefficients meeting lower bound zero (b∈∂RN

+ ) do not necessarily provide membership
to relative boundary of cone K . △

Whenever cone K is pointed, closed, and convex (not only polyhedral), then dual cone
K∗ has a halfspace-description in terms of the extreme directions Γi of K :

K∗ =
{

y | γTy ≥ 0 for all γ∈ {Γi , i=1 . . . N} ⊆ rel ∂K
}

(392)

because when {Γi} constitutes any set of generators for K , the discretization result in
§2.13.4.1 allows relaxation of the requirement ∀ x∈K in (296) to ∀ γ∈{Γi} directly.2.70

That dual cone so defined is unique, identical to (296), polyhedral whenever the number
of generators N is finite

K∗ =
{

y | XTy º 0
}

⊆ Rn (362)

and is full-dimensional because K is assumed pointed. But K∗ is not necessarily pointed
unless K is full-dimensional (§2.13.1.1).

2.13.6.1 Facet normal & extreme direction

We see from (362) that the conically independent generators of cone K (namely, the
extreme directions of pointed closed convex cone K constituting the N columns of X)
each define an inward-normal to a hyperplane supporting dual cone K∗ (§2.4.2.6.1) and
exposing a dual facet when N is finite. Were K∗ pointed and finitely generated, then by
closure the conjugate statement would also hold; id est, the extreme directions of pointed
K∗ each define an inward-normal to a hyperplane supporting K and exposing a facet when
N is finite. Examine Figure 60 or Figure 66, for example.

We may conclude, the extreme directions of proper polyhedral K are respectively
orthogonal to the facets of K∗; likewise, the extreme directions of proper polyhedral
K∗ are respectively orthogonal to the facets of K .

2.70The extreme directions of K constitute a minimal set of generators. Formulae and conversions to
vertex-description of the dual cone are in §2.13.9 and §2.13.11.
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w −K

u0
Γ1 ⊥ Γ4

Γ2 ⊥ Γ3

Γ1

Γ2

Γ3

Γ4

K

K∗

K∗

Figure 67: (confer Figure 177) Simplicial cone K∈R2 and its dual K∗ drawn truncated.
Conically independent generators Γ1 and Γ2 constitute extreme directions of K
while Γ3 and Γ4 constitute extreme directions of K∗. Dotted ray-pairs bound
translated cones K . Point x is comparable to point z (and vice versa) but
not to y ; z ºK x ⇔ z − x∈K ⇔ z − x ºK 0 iff ∃ nonnegative coordinates for
biorthogonal expansion of z − x . Point y is not comparable to z because z does
not belong to y ±K . Translating a negated cone is quite helpful for visualization:
u ¹K w ⇔ u∈ w −K ⇔ u − w ¹K 0. Points need not belong to K to be comparable;
e.g, all points less than w (w.r.t K) belong to w −K .
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2.13.7 Biorthogonal expansion by example

2.13.7.0.1 Example. Relationship to dual polyhedral cone.
Simplicial cone K illustrated in Figure 67 induces a partial order on R2. All points greater
than x with respect to K , for example, are contained in the translated cone x + K . The
extreme directions Γ1 and Γ2 of K do not make an orthogonal set; neither do extreme
directions Γ3 and Γ4 of dual cone K∗; rather, we have the biorthogonality condition [384]

ΓT
4 Γ1 = ΓT

3 Γ2 = 0

ΓT
3 Γ1 6= 0 , ΓT

4 Γ2 6= 0
(393)

Biorthogonal expansion of x∈K is then

x = Γ1
ΓT

3 x

ΓT
3 Γ1

+ Γ2
ΓT

4 x

ΓT
4 Γ2

(394)

where ΓT
3 x/(ΓT

3 Γ1) is the nonnegative coefficient of nonorthogonal projection (§E.6.1) of x
on Γ1 in the direction orthogonal to Γ3 (y in Figure 177 p.619), and where ΓT

4 x/(ΓT
4 Γ2)

is the nonnegative coefficient of nonorthogonal projection of x on Γ2 in the direction
orthogonal to Γ4 (z in Figure 177); they are coordinates in this nonorthogonal system.
Those coefficients must be nonnegative x ºK 0 because x∈ K (324) and K is simplicial.

If we ascribe the extreme directions of K to the columns of a matrix

X , [ Γ1 Γ2 ] (395)

then we find that the pseudoinverse transpose matrix

X†T =

[

Γ3
1

ΓT
3 Γ1

Γ4
1

ΓT
4 Γ2

]

(396)

holds the extreme directions of the dual cone. Therefore

x = XX†x (402)

is biorthogonal expansion (394) (§E.0.1), and biorthogonality condition (393) can be
expressed succinctly (§E.1.1)2.71

X†X = I (403)

Expansion w=XX†w , for any particular w∈Rn more generally, is unique w.r.t X if
and only if the extreme directions of K populating the columns of X∈ Rn×N are linearly
independent; id est, iff X has no nullspace. 2

2.13.7.0.2 Exercise. Visual comparison of real sums.
Given y ¹ x with respect to the nonnegative orthant, draw a figure showing a negated
shifted orthant (like the cone in Figure 67) illustrating why 1Ty ≤ 1Tx for y and x
anywhere in R2. Incorporate two hyperplanes into your drawing, one containing y
and another containing x with reference to Figure 29. Does this result hold in higher
dimension? H
2.71Possibly confusing is the fact that formula XX†x is simultaneously: the orthogonal projection of x
on R(X) (2013), and a sum of nonorthogonal projections of x∈R(X) on the range of each and every
column of full-rank X skinny-or-square (§E.5.0.0.2).
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2.13.7.1 Pointed cones and biorthogonality

Biorthogonality condition X†X = I from Example 2.13.7.0.1 means Γ1 and Γ2 are
linearly independent generators of K (§B.1.1.1); generators because every x∈K is their
conic combination. From §2.10.2 we know that means Γ1 and Γ2 must be extreme
directions of K .

A biorthogonal expansion is necessarily associated with a pointed closed convex
cone; pointed, otherwise there can be no extreme directions (§2.8.1). We will address
biorthogonal expansion with respect to a pointed polyhedral cone not full-dimensional in
§2.13.8.

2.13.7.1.1 Example. Expansions implied by diagonalization. (confer §6.4.3.2.1)
When matrix X∈ RM×M is diagonalizable (§A.5),

X = SΛS−1 = [ s1 · · · sM ] Λ





wT
1
...

wT
M



 =
M
∑

i=1

λi siw
T
i (1636)

coordinates for biorthogonal expansion are its eigenvalues λi (contained in diagonal
matrix Λ) when expanded in S ;

X = SS−1X = [ s1 · · · sM ]





wT
1 X
...

wT
MX



 =

M
∑

i=1

λi siw
T
i (397)

Coordinate values depend upon geometric relationship of X to its linearly independent
eigenmatrices siw

T
i . (§A.5.0.3, §B.1.1)

� Eigenmatrices siw
T
i are linearly independent dyads constituted by right and left

eigenvectors of diagonalizable X and are generators of some pointed polyhedral cone
K in a subspace of RM×M .

When S is real and X belongs to that polyhedral cone K , for example, then coordinates
of expansion (the eigenvalues λi ) must be nonnegative.

When X = QΛQT is symmetric, coordinates for biorthogonal expansion are its
eigenvalues when expanded in Q ; id est, for X∈ SM

X = QQTX =
M
∑

i=1

qi qT
i X =

M
∑

i=1

λi qiq
T
i ∈ SM (398)

becomes an orthogonal expansion with orthonormality condition QTQ=I where λi is
the ith eigenvalue of X , qi is the corresponding ith eigenvector arranged columnar in
orthogonal matrix

Q = [ q1 q2 · · · qM ] ∈ RM×M (399)

and where eigenmatrix qiq
T
i is an extreme direction of some pointed polyhedral cone

K⊂ SM and an extreme direction of the positive semidefinite cone SM
+ .
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� Orthogonal expansion is a special case of biorthogonal expansion of X∈ aff K
occurring when polyhedral cone K is any rotation about the origin of an orthant
belonging to a subspace.

Similarly, when X = QΛQT belongs to the positive semidefinite cone in the subspace
of symmetric matrices, coordinates for orthogonal expansion must be its nonnegative
eigenvalues (1539) when expanded in Q ; id est, for X∈ SM

+

X = QQTX =

M
∑

i=1

qi qT
i X =

M
∑

i=1

λi qiq
T
i ∈ SM

+ (400)

where λi≥ 0 is the ith eigenvalue of X . This means matrix X simultaneously belongs to
the positive semidefinite cone and to the pointed polyhedral cone K formed by the conic
hull of its eigenmatrices. 2

2.13.7.1.2 Example. Expansion respecting nonpositive orthant.
Suppose x∈K any orthant in Rn .2.72 Then coordinates for biorthogonal expansion of x
must be nonnegative; in fact, absolute value of the Cartesian coordinates.

Suppose, in particular, x belongs to the nonpositive orthant K = Rn
− . Then

biorthogonal expansion becomes orthogonal expansion

x = XXTx =

n
∑

i=1

−ei(−eT
i x) =

n
∑

i=1

−ei|eT
i x| ∈ Rn

− (401)

and the coordinates of expansion are nonnegative. For this orthant K we have
orthonormality condition XTX = I where X =−I , ei∈Rn is a standard basis vector,
and −ei is an extreme direction (§2.8.1) of K .

Of course, this expansion x=XXTx applies more broadly to domain Rn, but then
the coordinates each belong to all of R . 2

2.13.8 Biorthogonal expansion, derivation

Biorthogonal expansion is a means for determining coordinates in a pointed conic
coordinate system characterized by a nonorthogonal basis. Study of nonorthogonal bases
invokes pointed polyhedral cones and their duals; extreme directions of a cone K are
assumed to constitute the basis while those of the dual cone K∗ determine coordinates.

Unique biorthogonal expansion with respect to K relies upon existence of its linearly
independent extreme directions: Polyhedral cone K must be pointed; then it possesses
extreme directions. Those extreme directions must be linearly independent to uniquely
represent any point in their span.

We consider nonempty pointed polyhedral cone K possibly not full-dimensional; id est,
we consider a basis spanning a subspace. Then we need only observe that section of dual
cone K∗ in the affine hull of K because, by expansion of x , membership x∈ aff K is

2.72An orthant is simplicial and selfdual.
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implicit and because any breach of the ordinary dual cone into ambient space becomes
irrelevant (§2.13.9.3). Biorthogonal expansion

x = XX†x ∈ aff K = aff cone(X) (402)

is expressed in the extreme directions {Γi} of K arranged columnar in

X = [ Γ1 Γ2 · · · ΓN ] ∈ Rn×N (279)

under assumption of biorthogonality

X†X = I (403)

where † denotes matrix pseudoinverse (§E). We therefore seek, in this section,
a vertex-description for K∗∩ aff K in terms of linearly independent dual generators
{Γ∗

i }⊂ aff K in the same finite quantity2.73 as the extreme directions {Γi} of

K = cone(X) = {Xa | a º 0} ⊆ Rn (103)

We assume the quantity of extreme directions N does not exceed the dimension n of
ambient vector space because, otherwise, expansion w.r.t K could not be unique; id est,
assume N linearly independent extreme directions hence N ≤ n (X skinny2.74-or-square
full-rank). In other words, fat full-rank matrix X is prohibited by uniqueness because of
existence of an infinity of right inverses;

� polyhedral cones whose extreme directions number in excess of the ambient space
dimension are precluded in biorthogonal expansion.

2.13.8.1 x ∈ K
Suppose x belongs to K⊆Rn. Then x =Xa for some aº0. Coordinate vector a is
unique only when {Γi} is a linearly independent set.2.75 Vector a∈RN can take the
form a =Bx if R(B)= RN . Then we require Xa =XBx = x and Bx=BXa = a . The
pseudoinverse B =X†∈RN×n (§E) is suitable when X is skinny-or-square and full-rank.
In that case rankX =N , and for all c º 0 and i=1 . . . N

a º 0 ⇔ X†Xa º 0 ⇔ aTXTX†Tc ≥ 0 ⇔ ΓT
i X†Tc ≥ 0 (404)

The penultimate inequality follows from the generalized inequality and membership
corollary, while the last inequality is a consequence of that corollary’s discretization
(§2.13.4.2.1).2.76 From (404) and (392) we deduce

K∗∩ aff K = cone(X†T) = {X†Tc | c º 0} ⊆ Rn (405)

2.73When K is contained in a proper subspace of R
n, the ordinary dual cone K∗ will have more generators

in any minimal set than K has extreme directions.
2.74“Skinny” meaning thin; more rows than columns.
2.75Conic independence alone (§2.10) is insufficient to guarantee uniqueness.
2.76

a º 0 ⇔ aTXTX†Tc ≥ 0 ∀ (c º 0 ⇔ aTXTX†Tc ≥ 0 ∀ a º 0)
∀ (c º 0 ⇔ ΓT

i X†Tc ≥ 0 ∀ i ) ¨
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is the vertex-description for that section of K∗ in the affine hull of K because R(X†T)=
R(X) by definition of the pseudoinverse. From (309), we know K∗∩ aff K must be pointed
if rel intK is logically assumed nonempty with respect to aff K .

Conversely, suppose full-rank skinny-or-square matrix (N ≤ n)

X†T , [ Γ∗
1 Γ∗

2 · · · Γ∗
N ] ∈ Rn×N (406)

comprises the extreme directions {Γ∗
i }⊂ aff K of the dual-cone intersection with the affine

hull of K .2.77 From the discretized membership theorem and (313) we get a partial dual
to (392); id est, assuming x∈ aff cone X

x ∈ K ⇔ γ∗Tx ≥ 0 for all γ∗∈ {Γ∗
i , i=1 . . . N} ⊂ ∂K∗∩ aff K (407)

⇔ X†x º 0 (408)

that leads to a partial halfspace-description,

K =
{

x∈aff cone X | X†x º 0
}

(409)

For γ∗=X†Tei , any x =Xa , and for all i we have eT
i X†Xa = eT

i a ≥ 0 only when
a º 0. Hence x∈K .

When X is full-rank, then unique biorthogonal expansion of x∈ K becomes (402)

x = XX†x =

N
∑

i=1

Γi Γ∗T
i x (410)

whose coordinates a = Γ∗T
i x must be nonnegative because K is assumed pointed, closed,

and convex. Whenever X is full-rank, so is its pseudoinverse X†. (§E) In the present case,
the columns of X†T are linearly independent and generators of the dual cone K∗∩ aff K ;
hence, the columns constitute its extreme directions. (§2.10.2) That section of the dual
cone is itself a polyhedral cone (by (286) or the cone intersection theorem, §2.7.2.1.1)
having the same number of extreme directions as K .

2.13.8.2 x ∈ aff K
The extreme directions of K and K∗∩aff K have a distinct relationship; because X†X = I ,
then for i,j = 1 . . . N , ΓT

i Γ∗
i = 1, while for i 6= j , ΓT

i Γ∗
j = 0. Yet neither set of extreme

directions, {Γi} nor {Γ∗
i } , is necessarily orthogonal. This is a biorthogonality condition,

precisely, [384, §2.2.4] [218] implying each set of extreme directions is linearly independent.
(§B.1.1.1)

Intuitively, any nonnegative vector a is a conic combination of the standard basis {ei∈R
N};

aº 0 ⇔ ai eiº 0 for all i . The last inequality in (404) is a consequence of the fact that x=Xa may be
any extreme direction of K , in which case a is a standard basis vector; a = eiº 0. Theoretically, because
cº 0 defines a pointed polyhedral cone (in fact, the nonnegative orthant in R

N ), we can take (404) one
step further by discretizing c :

a º 0 ⇔ ΓT
i Γ∗

j ≥ 0 for i, j =1 . . . N ⇔ X†X ≥ 0

In words, X†X must be a matrix whose entries are each nonnegative.
2.77When closed convex cone K is not full-dimensional, K∗ has no extreme directions.
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Biorthogonal expansion therefore applies more broadly; meaning, for any x∈ aff K ,
vector x can be uniquely expressed x =Xb where b∈RN because aff K contains the
origin. Thus, for any such x∈R(X) (confer §E.1.1), biorthogonal expansion (410) becomes
x =XX†Xb =Xb .

2.13.9 Formulae finding dual cone

2.13.9.1 Pointed K , dual, X skinny-or-square full-rank

We wish to derive expressions for a convex cone and its ordinary dual under the general
assumptions: pointed polyhedral K denoted by its linearly independent extreme directions
arranged columnar in matrix X such that

rank(X∈ Rn×N ) = N , dim aff K ≤ n (411)

The vertex-description is given:

K = {Xa | a º 0} ⊆ Rn (412)

from which a halfspace-description for the dual cone follows directly:

K∗ = {y∈Rn | XTy º 0} (413)

By defining a matrix

X⊥ , basisN (XT) (414)

(a columnar basis for the orthogonal complement of R(X)), we can say

aff cone X = aff K = {x | X⊥Tx = 0} (415)

meaning K lies in a subspace, perhaps Rn. Thus a halfspace-description

K = {x∈Rn | X†x º 0 , X⊥Tx = 0} (416)

and a vertex-description2.78 from (313)

K∗ = { [X†T X⊥ −X⊥ ]b | b º 0 } ⊆ Rn (417)

These results are summarized for a pointed polyhedral cone, having linearly
independent generators, and its ordinary dual:

Cone Table 1 K K∗

vertex-description X X†T, ±X⊥

halfspace-description X† , X⊥T XT

2.78These descriptions are not unique. A vertex-description of the dual cone, for example, might use four
conically independent generators for a plane (§2.10.0.0.1, Figure 52) when only three would suffice.
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2.13.9.2 Simplicial case

When a convex cone is simplicial (§2.12.3), Cone Table 1 simplifies because then
aff cone X = Rn : For square X and assuming simplicial K such that

rank(X∈ Rn×N ) = N , dim aff K = n (418)

we have

Cone Table S K K∗

vertex-description X X†T

halfspace-description X† XT

For example, vertex-description (417) simplifies to

K∗ = {X†Tb | b º 0} ⊂ Rn (419)

Now, because dimR(X)=dimR(X†T) , (§E) dual cone K∗ is simplicial whenever K is.

2.13.9.3 Cone membership relations in a subspace

It is obvious by definition (296) of ordinary dual cone K∗, in ambient vector space R ,
that its determination instead in subspace S ⊆ R is identical to its intersection with S ;
id est, assuming closed convex cone K⊆S and K∗⊆R

(K∗ were ambient S) ≡ (K∗ in ambient R) ∩ S (420)

because

{y∈S | 〈y , x〉 ≥ 0 for all x∈ K} = {y∈R | 〈y , x〉 ≥ 0 for all x∈ K} ∩ S (421)

From this, a constrained membership relation for the ordinary dual cone K∗⊆R ,
assuming x, y∈S and closed convex cone K⊆S

y ∈ K∗∩ S ⇔ 〈y , x〉 ≥ 0 for all x ∈ K (422)

By closure in subspace S we have conjugation (§2.13.1.1):

x ∈ K ⇔ 〈y , x〉 ≥ 0 for all y∈ K∗∩ S (423)

This means membership determination in subspace S requires knowledge of dual cone
only in S . For sake of completeness, for proper cone K with respect to subspace S
(confer (325))

x ∈ intK ⇔ 〈y , x〉 > 0 for all y∈ K∗∩ S , y 6= 0 (424)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ intK∗∩ S (425)

(By closure, we also have the conjugate relations.) Yet when S equals aff K for K a closed
convex cone

x ∈ rel intK ⇔ 〈y , x〉 > 0 for all y∈ K∗∩ aff K , y 6= 0 (426)

x ∈ K , x 6= 0 ⇔ 〈y , x〉 > 0 for all y ∈ rel int(K∗∩ aff K) (427)
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2.13.9.4 Subspace S = aff K
Assume now a subspace S that is the affine hull of cone K : Consider again a pointed
polyhedral cone K denoted by its extreme directions arranged columnar in matrix X such
that

rank(X∈ Rn×N ) = N , dim aff K ≤ n (411)

We want expressions for the convex cone and its dual in subspace S=aff K :

Cone Table A K K∗∩ aff K
vertex-description X X†T

halfspace-description X† , X⊥T XT, X⊥T

When dim aff K = n , this table reduces to Cone Table S. These descriptions facilitate
work in a proper subspace. The subspace of symmetric matrices SN , for example, often
serves as ambient space.2.79

2.13.9.4.1 Exercise. Conically independent columns and rows.
We suspect the number of conically independent columns (rows) of X to be the same
for X†T, where † denotes matrix pseudoinverse (§E). Prove whether it holds that the
columns (rows) of X are c.i. ⇔ the columns (rows) of X†T are c.i. H

2.13.9.4.2 Example. Monotone nonnegative cone. [63, exer.2.33] [372, §2]
Simplicial cone (§2.12.3.1.1) KM+ is the cone of all nonnegative vectors having their entries
sorted in nonincreasing order:

KM+ , {x | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} ⊆ Rn
+

= {x | (ei − ei+1)
Tx ≥ 0, i = 1 . . . n−1, eT

nx ≥ 0}
= {x | X†x º 0}

(428)

a halfspace-description where ei is the ith standard basis vector, and where2.80

X†T , [ e1−e2 e2−e3 · · · en ] ∈ Rn×n (429)

For any vectors x and y , simple algebra demands

xTy =

n
∑

i=1

xi yi = (x1 − x2)y1 + (x2 − x3)(y1 + y2) + (x3 − x4)(y1 + y2 + y3) + · · ·

+ (xn−1 − xn)(y1 + · · · + yn−1) + xn(y1 + · · · + yn)

(430)

Because xi − xi+1 ≥ 0 ∀ i by assumption whenever x∈KM+ , we can employ dual
generalized inequalities (322) with respect to the selfdual nonnegative orthant Rn

+ to find

2.79The dual cone of positive semidefinite matrices S
N∗
+ = S

N
+ remains in S

N by convention, whereas the

ordinary dual cone would venture into R
N×N .

2.80With X† in hand, we might concisely scribe the remaining vertex- and halfspace-descriptions from
the tables for KM+ and its dual. Instead we use dual generalized inequalities in their derivation.



2.13. DUAL CONE & GENERALIZED INEQUALITY 169

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

KM+

K∗
M+

K∗
M+

KM+

∂K∗
M+

(a)

(b)

X†T(: , 1) =





1
−1

0





X†T(: , 2) =





0
1

−1





X†T(: , 3) =





0
0
1





X =





1 1 1
0 1 1
0 0 1





Figure 68: Simplicial cones. (a) Monotone nonnegative cone KM+ and its dual K∗
M+

(drawn truncated) in R2. (b) Monotone nonnegative cone and boundary of its dual (both
drawn truncated) in R3. Extreme directions of K∗

M+ are indicated.
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Figure 69: Monotone cone KM and its dual K∗
M (drawn truncated) in R2.

the halfspace-description of dual monotone nonnegative cone K∗
M+ . We can say xTy≥ 0

for all X†xº 0 [sic ] if and only if

y1 ≥ 0 , y1 + y2 ≥ 0 , . . . , y1 + y2 + · · · + yn ≥ 0 (431)

id est,
xTy ≥ 0 ∀X†x º 0 ⇔ XTy º 0 (432)

where
X = [ e1 e1+ e2 e1+ e2+ e3 · · · 1 ] ∈ Rn×n (433)

Because X†xº 0 connotes membership of x to pointed KM+ , then by (296) the dual
cone we seek comprises all y for which (432) holds; thus its halfspace-description

K∗
M+ = {y º

K∗
M+

0} = {y | ∑k
i=1 yi ≥ 0 , k = 1 . . . n} = {y | XTy º 0} ⊂ Rn (434)

The monotone nonnegative cone and its dual are simplicial, illustrated for two Euclidean
spaces in Figure 68.

From §2.13.6.1, the extreme directions of proper KM+are respectively orthogonal to the
facets of K∗

M+ . Because K∗
M+ is simplicial, the inward-normals to its facets constitute the

linearly independent rows of XT by (434). Hence the vertex-description for KM+ employs
the columns of X in agreement with Cone Table S because X†=X−1. Likewise, the
extreme directions of proper K∗

M+ are respectively orthogonal to the facets of KM+ whose

inward-normals are contained in the rows of X† by (428). So the vertex-description for
K∗

M+ employs the columns of X†T. 2

2.13.9.4.3 Example. Monotone cone. (Figure 69, Figure 70)
Full-dimensional but not pointed, the monotone cone is polyhedral and defined by the
halfspace-description

KM , {x∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn} = {x ∈ Rn | X∗Tx º 0} (435)
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Figure 70: Two views of monotone cone KM and its dual K∗
M (drawn truncated) in R3.

Monotone cone is not pointed. Dual monotone cone is not full-dimensional. (Cartesian
coordinate axes are drawn for reference.)
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Its dual is therefore pointed but not full-dimensional;

K∗
M = {X∗ b , [ e1−e2 e2−e3 · · · en−1−en ] b | b º 0 } ⊂ Rn (436)

the dual cone vertex-description where the columns of X∗ comprise its extreme directions.
Because dual monotone cone K∗

M is pointed and satisfies

rank(X∗∈ Rn×N ) = N , dim aff K∗ ≤ n (437)

where N = n−1, and because KM is closed and convex, we may adapt Cone Table 1
(p.166) as follows:

Cone Table 1* K∗ K∗∗= K
vertex-description X∗ X∗†T, ±X∗⊥

halfspace-description X∗† , X∗⊥T X∗T

The vertex-description for KM is therefore

KM = {[X∗†T X∗⊥ −X∗⊥ ]a | a º 0} ⊂ Rn (438)

where X∗⊥= 1 and

X∗† =
1

n

























n − 1 −1 −1 · · · −1 −1 −1

n − 2 n − 2 −2
. . . · · · −2 −2

... n − 3 n − 3
. . . −(n − 4)

... −3

3
... n − 4

. . . −(n − 3) −(n − 3)
...

2 2 · · · . . . 2 −(n − 2) −(n − 2)

1 1 1 · · · 1 1 −(n − 1)

























∈ Rn−1×n (439)

while

K∗
M = {y ∈ Rn | X∗†y º 0 , X∗⊥Ty = 0} (440)

is the dual monotone cone halfspace-description. 2

2.13.9.4.4 Exercise. Inside the monotone cones.
Mathematically describe the respective interior of the monotone nonnegative cone and
monotone cone. In three dimensions, also describe the relative interior of each face. H

2.13.9.5 More pointed cone descriptions with equality condition

Consider pointed polyhedral cone K having a linearly independent set of generators
and whose subspace membership is explicit; id est, we are given the ordinary
halfspace-description

K = {x | Ax º 0 , Cx = 0} ⊆ Rn (286a)
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where A∈ Rm×n and C ∈ Rp×n. This can be equivalently written in terms of nullspace
of C and vector ξ :

K = {Zξ ∈ Rn | AZξ º 0} (441)

where R(Z∈Rn×n−rank C ),N (C ). Assuming (411) is satisfied

rankX , rank
(

(AZ )†∈ Rn−rank C×m
)

= m − ℓ = dim aff K ≤ n − rankC (442)

where ℓ is the number of conically dependent rows in AZ which must be removed
to make ÂZ before the Cone Tables become applicable.2.81 Then results collected
there admit assignment X̂ , (ÂZ )†∈Rn−rank C×m−ℓ, where Â∈Rm−ℓ×n, followed with
linear transformation by Z . So we get the vertex-description, for full-rank (ÂZ )†

skinny-or-square,
K = {Z(ÂZ )† b | b º 0} (443)

From this and (362) we get a halfspace-description of the dual cone

K∗ = {y∈Rn | (ZTÂT)†ZTy º 0} (444)

From this and Cone Table 1 (p.166) we get a vertex-description, (1974)

K∗ = {[Z†T(ÂZ )T CT −CT ]c | c º 0} (445)

Yet because
K = {x | Ax º 0} ∩ {x | Cx = 0} (446)

then, by (313), we get an equivalent vertex-description for the dual cone

K∗ = {x | Ax º 0}∗ + {x | Cx = 0}∗
= {[AT CT −CT ]b | b º 0}

(447)

from which the conically dependent columns may, of course, be removed.

2.13.10 Dual cone-translate

(§E.10.3.2.1) First-order optimality condition (351) inspires a dual-cone variant: For any
set K , the negative dual of its translation by any a∈Rn is

−(K − a)∗ = {y∈Rn | 〈y , x − a〉≤ 0 for all x∈ K} , K⊥(a)
= {y∈Rn | 〈y , x〉≤ 0 for all x∈ K − a} (448)

a closed convex cone called normal cone to K at point a . From this, a new membership
relation like (319):

y ∈ −(K − a)∗ ⇔ 〈y , x − a〉≤ 0 for all x ∈ K (449)

and by closure the conjugate, for closed convex cone K

x ∈ K ⇔ 〈y , x − a〉≤ 0 for all y ∈ −(K − a)∗ (450)

2.81When the conically dependent rows (§2.10) are removed, the rows remaining must be linearly
independent for the Cone Tables (p.19) to apply.
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α

C

β

γ

x⋆

−∇f(x⋆)

{y | ∇f(x⋆)T(y − x⋆) = 0 , f(x⋆)= γ}

{z | f(z) = α}

α ≥ β ≥ γ

Figure 71: (confer Figure 82) Shown is a plausible contour plot in R2 of some arbitrary
differentiable convex real function f(x) at selected levels α , β , and γ ; id est, contours
of equal level f (level sets) drawn dashed in function’s domain. From results in §3.6.2
(p.218), gradient ∇f(x⋆) is normal to γ-sublevel set Lγf (560) by Definition E.9.1.0.1.
From §2.13.10.1, function is minimized over convex set C at point x⋆ iff negative gradient
−∇f(x⋆) belongs to normal cone to C there. In circumstance depicted, normal cone is
a ray whose direction is coincident with negative gradient. So, gradient is normal to a
hyperplane supporting both C and the γ-sublevel set.
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2.13.10.1 first-order optimality condition - restatement

(confer §2.13.3) The general first-order necessary and sufficient condition for optimality of
solution x⋆ to a minimization problem with real differentiable convex objective function
f(x) : Rn→R over convex feasible set C is [324, §3]

−∇f(x⋆) ∈ −(C − x⋆)∗ , x⋆∈ C (451)

id est, the negative gradient (§3.6) belongs to the normal cone to C at x⋆ as in Figure 71.

2.13.10.1.1 Example. Normal cone to orthant.
Consider proper cone K= Rn

+ , the selfdual nonnegative orthant in Rn. The normal cone
to Rn

+ at a∈K is (2208)

K⊥
Rn

+
(a∈Rn

+) = −(Rn
+ − a)∗ = −Rn

+ ∩ a⊥ , a∈Rn
+ (452)

where −Rn
+ =−K∗ is the algebraic complement of Rn

+ , and a⊥ is the orthogonal
complement to range of vector a . This means: When point a is interior to Rn

+ , the
normal cone is the origin. If np represents number of nonzero entries in vector a∈∂Rn

+ ,
then dim(−Rn

+ ∩ a⊥)= n − np and there is a complementary relationship between the
nonzero entries in vector a and the nonzero entries in any vector x∈−Rn

+ ∩ a⊥. 2

2.13.10.1.2 Example. Optimality conditions for conic problem.
Consider a convex optimization problem having real differentiable convex objective
function f(x) : Rn→R defined on domain Rn

minimize
x

f(x)

subject to x ∈ K (453)

Let’s first suppose that the feasible set is a pointed polyhedral cone K possessing a linearly
independent set of generators and whose subspace membership is made explicit by fat
full-rank matrix C∈Rp×n ; id est, we are given the halfspace-description, for A∈Rm×n

K = {x | Ax º 0 , Cx = 0} ⊆ Rn (286a)

(We’ll generalize to any convex cone K shortly.) Vertex-description of this cone, assuming
(ÂZ )† skinny-or-square full-rank, is

K = {Z(ÂZ )† b | b º 0} (443)

where Â∈Rm−ℓ×n, ℓ is the number of conically dependent rows in AZ (§2.10) which
must be removed, and Z∈Rn×n−rank C holds basisN (C ) columnar.

From optimality condition (351),

∇f(x⋆)T(Z(ÂZ )† b − x⋆)≥ 0 ∀ b º 0 (454)

−∇f(x⋆)TZ(ÂZ )†(b − b⋆)≤ 0 ∀ b º 0 (455)
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because
x⋆ , Z(ÂZ )† b⋆∈ K (456)

From membership relation (449) and Example 2.13.10.1.1

〈−(ZTÂT)†ZT∇f(x⋆) , b − b⋆〉 ≤ 0 for all b ∈ Rm−ℓ
+

⇔
−(ZTÂT)†ZT∇f(x⋆) ∈ −Rm−ℓ

+ ∩ b⋆⊥
(457)

Then equivalent necessary and sufficient conditions for optimality of conic problem (453)
with feasible set K are: (confer (361))

(ZTÂT)†ZT∇f(x⋆) º
R

m−ℓ
+

0 , b⋆ º
R

m−ℓ
+

0 , ∇f(x⋆)TZ(ÂZ )† b⋆ = 0 (458)

expressible, by (444),

∇f(x⋆) ∈ K∗, x⋆ ∈ K , ∇f(x⋆)Tx⋆ = 0 (459)

This result (459) actually applies more generally to any convex cone K comprising
the feasible set: Necessary and sufficient optimality conditions are in terms of objective
gradient

−∇f(x⋆) ∈ −(K − x⋆)∗ , x⋆∈ K (451)

whose membership to normal cone, assuming only cone K convexity,

−(K − x⋆)∗ = K⊥
K(x⋆∈ K) = −K∗∩ x⋆⊥ (2208)

equivalently expresses conditions (459).
When K= Rn

+ , in particular, then C =0, A=Z = I∈ Sn ; id est,

minimize
x

f(x)

subject to x º
R

n
+

0 (460)

Necessary and sufficient optimality conditions become (confer [63, §4.2.3])

∇f(x⋆) º
R

n
+

0 , x⋆ º
R

n
+

0 , ∇f(x⋆)Tx⋆ = 0 (461)

equivalent to condition (329)2.82 (under nonzero gradient) for membership to the
nonnegative orthant boundary ∂Rn

+ . 2

2.13.10.1.3 Example. Complementarity problem. [226]
A complementarity problem in nonlinear function f is nonconvex

find z ∈ K
subject to f(z) ∈ K∗

〈z , f(z)〉 = 0
(462)

2.82 and equivalent to well-known Karush-Kuhn-Tucker (KKT) optimality conditions [63, §5.5.3] because
the dual variable becomes gradient ∇f(x).

http://www.convexoptimization.com/wikimization/index.php/Harold_W._Kuhn
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yet bears strong resemblance to (459) and to Moreau’s decomposition (2144) on page 639
for projection P on mutually polar cones K and −K∗. Identify a sum of mutually
orthogonal projections x , z−f(z) ; in Moreau’s terms, z=PKx and −f(z)=P−K∗x .
Then f(z)∈K∗ (§E.9.2.2 no.4) and z is a solution to the complementarity problem iff it is
a fixed point of

z = PKx = PK(z − f(z)) (463)

Given that a solution exists, existence of a fixed point would be guaranteed by theory
of contraction. [243, p.300] But because only nonexpansivity (Theorem E.9.3.0.1) is
achievable by a projector, uniqueness cannot be assured. [219, p.155] Elegant proofs of
equivalence between complementarity problem (462) and fixed point problem (463) are
provided by Németh [398, Fixed point problems]. 2

2.13.10.1.4 Example. Linear complementarity problem. [91] [288] [329]
Given matrix B∈Rn×n and vector q∈Rn, a prototypical complementarity problem on
the nonnegative orthant K= Rn

+ is linear in w = f(z) :

find z º 0
subject to w º 0

wTz = 0
w = q + Bz

(464)

This problem is not convex when both vectors w and z are variable.2.83 Notwithstanding,
this linear complementarity problem can be solved by identifying w←∇f(z)= q + Bz
then substituting that gradient into (462)

find z ∈ K
subject to ∇f(z) ∈ K∗

〈z , ∇f(z)〉 = 0
(465)

which is simply a restatement of optimality conditions (459) for conic problem (453).
Suitable f(z) is the quadratic objective from convex problem

minimize
z

1
2zTBz + qTz

subject to z º 0
(466)

which means B∈ Sn
+ should be (symmetric) positive semidefinite for solution of (464) by

this method. Then (464) has solution iff (466) does. 2

2.83But if one of them is fixed, then the problem becomes convex with a very simple geometric
interpretation: Define the affine subset

A , {y∈R
n | By = w − q}

For wTz to vanish, there must be a complementary relationship between the nonzero entries of vectors w
and z ; id est, wizi = 0 ∀ i . Given wº 0, then z belongs to the convex set of solutions:

z ∈ −K⊥
Rn
+
(w∈R

n
+) ∩ A = R

n
+ ∩ w⊥ ∩ A

where K⊥
Rn
+
(w) is the normal cone to R

n
+ at w (452). If this intersection is nonempty, then the problem is

solvable.
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2.13.10.1.5 Exercise. Optimality for equality constrained conic problem.
Consider a conic optimization problem like (453) having real differentiable convex objective
function f(x) : Rn→R

minimize
x

f(x)

subject to Cx = d
x ∈ K

(467)

minimized over convex cone K but, this time, constrained to affine set A = {x | Cx = d}.
Show, by means of first-order optimality condition (351) or (451), that necessary and
sufficient optimality conditions are: (confer (459))

x⋆ ∈ K
Cx⋆ = d

∇f(x⋆) + CTν⋆ ∈ K∗

〈∇f(x⋆) + CTν⋆, x⋆〉 = 0

(468)

where ν⋆ is any vector2.84 satisfying these conditions. H

2.13.11 Proper nonsimplicial K , dual, X fat full-rank

Since conically dependent columns can always be removed from X to construct K or to
determine K∗ [391], then assume we are given a set of N conically independent generators
(§2.10) of an arbitrary proper polyhedral cone K in Rn arranged columnar in X∈ Rn×N

such that N > n (fat) and rankX = n . Having found formula (419) to determine the
dual of a simplicial cone, the easiest way to find a vertex-description of proper dual cone
K∗ is to first decompose K into simplicial parts Ki so that K=

⋃Ki .2.85 Each component
simplicial cone in K corresponds to some subset of n linearly independent columns from
X . The key idea, here, is how the extreme directions of the simplicial parts must remain
extreme directions of K . Finding the dual of K amounts to finding the dual of each
simplicial part:

2.13.11.0.1 Theorem. Dual cone intersection. [347, §2.7]
Suppose proper cone K⊂ Rn equals the union of M simplicial cones Ki whose extreme
directions all coincide with those of K . Then proper dual cone K∗ is the intersection of
M dual simplicial cones K∗

i ; id est,

K =

M
⋃

i=1

Ki ⇒ K∗ =

M
⋂

i=1

K∗
i (469)

⋄

2.84 an optimal dual variable, these optimality conditions are equivalent to the KKT conditions [63, §5.5.3].
2.85That proposition presupposes, of course, that we know how to perform simplicial decomposition
efficiently; also called “triangulation”. [321] [189, §3.1] [190, §3.1] Existence of multiple simplicial parts
means expansion of x∈K , like (410), can no longer be unique because number N of extreme directions
in K exceeds dimension n of the space.
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Proof. For Xi∈Rn×n, a complete matrix of linearly independent extreme
directions (p.125) arranged columnar, corresponding simplicial Ki (§2.12.3.1.1) has
vertex-description

Ki = {Xi c | c º 0} (470)

Now suppose,

K =
M
⋃

i=1

Ki =
M
⋃

i=1

{Xi c | c º 0} (471)

The union of all Ki can be equivalently expressed

K =















[X1 X2 · · · XM ]









a
b
...
c









| a , b . . . c º 0















(472)

Because extreme directions of the simplices Ki are extreme directions of K by assumption,
then

K = { [X1 X2 · · · XM ] d | d º 0 } (473)

by the extremes theorem (§2.8.1.1.1). Defining X , [X1 X2 · · · XM ] (with any redundant
[sic ] columns optionally removed from X), then K∗ can be expressed ((362), Cone Table S
p.167)

K∗ = {y | XTy º 0} =
M
⋂

i=1

{y | XT
i y º 0} =

M
⋂

i=1

K∗
i (474)

¨

To find the extreme directions of the dual cone, first we observe that some facets of each
simplicial part Ki are common to facets of K by assumption, and the union of all those
common facets comprises the set of all facets of K by design. For any particular proper
polyhedral cone K , the extreme directions of dual cone K∗ are respectively orthogonal to
the facets of K . (§2.13.6.1) Then the extreme directions of the dual cone can be found
among inward-normals to facets of the component simplicial cones Ki ; those normals are
extreme directions of the dual simplicial cones K∗

i . From the theorem and Cone Table S
(p.167),

K∗ =
M
⋂

i=1

K∗
i =

M
⋂

i=1

{X†T
i c | c º 0} (475)

The set of extreme directions {Γ∗
i } for proper dual cone K∗ is therefore constituted by

those conically independent generators, from the columns of all the dual simplicial matrices
{X†T

i } , that do not violate discrete definition (362) of K∗;

{Γ∗
1 , Γ∗

2 . . . Γ∗
N} = c.i.

{

X†T
i (:,j) , i=1 . . . M , j =1 . . . n | X†

i (j,:)Γℓ ≥ 0, ℓ =1 . . . N
}

(476)

where c.i. denotes selection of only the conically independent vectors from the argument
set, argument (:,j) denotes the j th column while (j,:) denotes the j th row, and {Γℓ}
constitutes the extreme directions of K . Figure 53b (p.124) shows a cone and its dual
found via this algorithm.
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2.13.11.0.2 Example. Dual of K nonsimplicial in subspace aff K .
Given conically independent generators for pointed closed convex cone K in R4 arranged
columnar in

X = [ Γ1 Γ2 Γ3 Γ4 ] =









1 1 0 0
−1 0 1 0

0 −1 0 1
0 0 −1 −1









(477)

having dim aff K= rankX = 3, (281) then performing the most inefficient simplicial
decomposition in aff K we find

X1 =









1 1 0
−1 0 1

0 −1 0
0 0 −1









, X2 =









1 1 0
−1 0 0

0 −1 1
0 0 −1









X3 =









1 0 0
−1 1 0

0 0 1
0 −1 −1









, X4 =









1 0 0
0 1 0

−1 0 1
0 −1 −1









(478)

The corresponding dual simplicial cones in aff K have generators respectively columnar
in

4X†T
1 =









2 1 1
−2 1 1

2 −3 1
−2 1 −3









, 4X†T
2 =









1 2 1
−3 2 1

1 −2 1
1 −2 −3









4X†T
3 =









3 2 −1
−1 2 −1
−1 −2 3
−1 −2 −1









, 4X†T
4 =









3 −1 2
−1 3 −2
−1 −1 2
−1 −1 −2









(479)

Applying algorithm (476) we get

[ Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4 ] =
1

4









1 2 3 2
1 2 −1 −2
1 −2 −1 2

−3 −2 −1 −2









(480)

whose rank is 3, and is the known result;2.86 a conically independent set of generators for
that pointed section of the dual cone K∗ in aff K ; id est, K∗∩ aff K . 2

2.86These calculations proceed so as to be consistent with [122, §6]; as if the ambient vector space were
proper subspace aff K whose dimension is 3. In that ambient space, K may be regarded as a proper cone.
Yet that author (from the citation) erroneously states dimension of the ordinary dual cone to be 3 ; it is,
in fact, 4.
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2.13.11.0.3 Example. Dual of proper polyhedral K in R4.
Given conically independent generators for a full-dimensional pointed closed convex cone K

X = [ Γ1 Γ2 Γ3 Γ4 Γ5 ] =









1 1 0 1 0
−1 0 1 0 1

0 −1 0 1 0
0 0 −1 −1 0









(481)

we count 5!/((5−4)! 4!)=5 component simplices.2.87 Applying algorithm (476), we find
the six extreme directions of dual cone K∗ (with Γ2 = Γ∗

5)

X∗ = [ Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4 Γ∗
5 Γ∗

6 ] =









1 0 0 1 1 1
1 0 0 1 0 0
1 0 −1 0 −1 1
1 −1 −1 1 0 0









(482)

which means, (§2.13.6.1) this proper polyhedral K= cone(X) has six (three-dimensional)
facets generated G by its {extreme directions}:

G































F1

F2

F3

F4

F5

F6































=































Γ1 Γ2 Γ3

Γ1 Γ2 Γ5

Γ1 Γ4 Γ5

Γ1 Γ3 Γ4

Γ3 Γ4 Γ5

Γ2 Γ3 Γ5































(483)

whereas dual proper polyhedral cone K∗ has only five:

G























F∗
1

F∗
2

F∗
3

F∗
4

F∗
5























=























Γ∗
1 Γ∗

2 Γ∗
3 Γ∗

4

Γ∗
1 Γ∗

2 Γ∗
6

Γ∗
1 Γ∗

4 Γ∗
5 Γ∗

6

Γ∗
3 Γ∗

4 Γ∗
5

Γ∗
2 Γ∗

3 Γ∗
5 Γ∗

6























(484)

Six two-dimensional cones, having generators respectively {Γ∗
1 Γ∗

3} {Γ∗
2 Γ∗

4} {Γ∗
1 Γ∗

5}
{Γ∗

4 Γ∗
6} {Γ∗

2 Γ∗
5} {Γ∗

3 Γ∗
6} , are relatively interior to dual facets; so cannot be

two-dimensional faces of K∗ (by Definition 2.6.0.0.3).
We can check this result (482) by reversing the process; we find 6!/((6−4)! 4!)− 3=12

component simplices in the dual cone.2.88 Applying algorithm (476) to those simplices
returns a conically independent set of generators for K equivalent to (481). 2

2.13.11.0.4 Exercise. Reaching proper polyhedral cone interior.
Name two extreme directions Γi of cone K from Example 2.13.11.0.3 whose convex hull
passes through that cone’s interior. Explain why. Are there two such extreme directions
of dual cone K∗? H

2.87There are no linearly dependent combinations of three or four extreme directions in the primal cone.
2.88Three combinations of four dual extreme directions are linearly dependent; they belong to the dual
facets. But there are no linearly dependent combinations of three dual extreme directions.
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2.13.12 coordinates in proper nonsimplicial system

A natural question pertains to whether a theory of unique coordinates, like biorthogonal
expansion w.r.t pointed closed convex K , is extensible to proper cones whose extreme
directions number in excess of ambient spatial dimensionality.

2.13.12.0.1 Theorem. Conic coordinates.
With respect to vector v in some finite-dimensional Euclidean space Rn, define a
coordinate t⋆v of point x in full-dimensional pointed closed convex cone K

t⋆v(x) , sup{t∈R | x − tv∈K} (485)

Given points x and y in cone K , if t⋆v(x)= t⋆v(y) for each and every extreme direction v
of K then x = y . ⋄

Conic coordinate definition (485) acquires its heritage from conditions (375) for
generator membership to a smallest face. Coordinate t⋆v(c)=0, for example, corresponds
to unbounded µ in (375); indicating, extreme direction v cannot belong to the smallest
face of cone K that contains c .

2.13.12.0.2 Proof. Vector x− t⋆v must belong to the cone boundary ∂K by definition
(485). So there must exist a nonzero vector λ that is inward-normal to a hyperplane
supporting cone K and containing x− t⋆v ; id est, by boundary membership relation for
full-dimensional pointed closed convex cones (§2.13.2)

x− t⋆v ∈ ∂K ⇔ ∃ λ 6= 0 Ä 〈λ , x− t⋆v〉 = 0 , λ ∈ K∗, x− t⋆v ∈ K (329)

where
K∗ = {w∈Rn | 〈v , w〉 ≥ 0 for all v∈ G(K)} (368)

is the full-dimensional pointed closed convex dual cone. The set G(K) , of possibly
infinite cardinality N , comprises generators for cone K ; e.g, its extreme directions which
constitute a minimal generating set. If x− t⋆v is nonzero, any such vector λ must belong
to the dual cone boundary by conjugate boundary membership relation

λ ∈ ∂K∗ ⇔ ∃ x− t⋆v 6= 0 Ä 〈λ , x− t⋆v〉 = 0 , x− t⋆v ∈ K , λ ∈ K∗ (330)

where
K = {z∈Rn | 〈λ , z〉 ≥ 0 for all λ∈ G(K∗)} (367)

This description of K means: cone K is an intersection of halfspaces whose inward-normals
are generators of the dual cone. Each and every face of cone K (except the cone itself)
belongs to a hyperplane supporting K . Each and every vector x− t⋆v on the cone
boundary must therefore be orthogonal to an extreme direction constituting generators
G(K∗) of the dual cone.

To the ith extreme direction v = Γi∈Rn of cone K , ascribe a coordinate t⋆i (x)∈R of
x from definition (485). On domain K , the mapping

t⋆(x) =







t⋆1(x)
...

t⋆N (x)






: Rn→RN (486)
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has no nontrivial nullspace. Because x− t⋆v must belong to ∂K by definition, the mapping
t⋆(x) is equivalent to a convex problem (separable in index i) whose objective (by (329))
is tightly bounded below by 0 :

t⋆(x) ≡ arg minimize
t∈RN

N
∑

i=1

Γ∗T
j(i)(x − tiΓi)

subject to x − tiΓi ∈ K , i=1 . . . N
(487)

where index j∈ I is dependent on i and where (by (367)) λ = Γ∗
j ∈Rn is an extreme

direction of dual cone K∗ that is normal to a hyperplane supporting K and containing
x − t⋆i Γi . Because extreme-direction cardinality N for cone K is not necessarily the same
as for dual cone K∗, index j must be judiciously selected from a set I .

To prove injectivity when extreme-direction cardinality N > n exceeds spatial
dimension, we need only show mapping t⋆(x) to be invertible; [139, thm.9.2.3] id est,
x is recoverable given t⋆(x) :

x = arg minimize
x̃∈R

n

N
∑

i=1

Γ∗T
j(i)(x̃ − t⋆i Γi)

subject to x̃ − t⋆i Γi ∈ K , i=1 . . . N
(488)

The feasible set of this nonseparable convex problem is an intersection of translated
full-dimensional pointed closed convex cones

⋂

iK + t⋆i Γi . The objective function’s linear
part describes movement in normal-direction −Γ∗

j for each of N hyperplanes. The optimal
point of hyperplane intersection is the unique solution x when {Γ∗

j } comprises n linearly
independent normals that come from the dual cone and make the objective vanish. Because
the dual cone K∗ is full-dimensional, pointed, closed, and convex by assumption, there
exist N extreme directions {Γ∗

j } from K∗⊂ Rn that span Rn. So we need simply choose
N spanning dual extreme directions that make the optimal objective vanish. Because such
dual extreme directions preexist by (329), t⋆(x) is invertible.

Otherwise, in the case N≤ n , t⋆(x) holds coordinates for biorthogonal expansion.
Reconstruction of x is therefore unique. ¨

2.13.12.1 reconstruction from conic coordinates

The foregoing proof of the conic coordinates theorem is not constructive; it establishes
existence of dual extreme directions {Γ∗

j } that will reconstruct a point x from its
coordinates t⋆(x) via (488), but does not prescribe the index set I . There are at least two
computational methods for specifying {Γ∗

j(i)} : one is combinatorial but sure to succeed,
the other is a geometric method that searches for a minimum of a nonconvex function.
We describe the latter:

Convex problem (P)

(P)
maximize

t∈R

t

subject to x − tv∈K

minimize
λ∈R

n
λTx

subject to λTv = 1
λ ∈ K∗

(D) (489)
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is equivalent to definition (485) whereas convex problem (D) is its dual;2.89 meaning,
primal and dual optimal objectives are equal t⋆ = λ⋆Tx assuming Slater’s condition (p.249)
is satisfied. Under this assumption of strong duality, λ⋆T(x − t⋆v)= t⋆(1 − λ⋆Tv)=0 ;
which implies, the primal problem is equivalent to

minimize
t∈R

λ⋆T(x − tv)

subject to x − tv∈K
(p) (490)

while the dual problem is equivalent to

minimize
λ∈R

n
λT(x − t⋆v)

subject to λTv = 1
λ ∈ K∗

(d) (491)

Instead given coordinates t⋆(x) and a description of cone K , we propose inversion by
alternating solution of respective primal and dual problems

minimize
x∈R

n

N
∑

i=1

Γ∗T
i (x − t⋆i Γi)

subject to x − t⋆i Γi ∈ K , i=1 . . . N
(492)

minimize
Γ∗

i∈R
n

N
∑

i=1

Γ∗T
i (x⋆− t⋆i Γi)

subject to Γ∗T
i Γi = 1 , i=1 . . . N

Γ∗
i ∈ K∗ , i=1 . . . N

(493)

where dual extreme directions Γ∗
i are initialized arbitrarily and ultimately ascertained by

the alternation. Convex problems (492) and (493) are iterated until convergence which is
guaranteed by virtue of a monotonically nonincreasing real sequence of objective values.
Convergence can be fast. The mapping t⋆(x) is uniquely inverted when the necessarily
nonnegative objective vanishes; id est, when Γ∗T

i (x⋆− t⋆i Γi)=0 ∀ i . Here, a zero objective
can occur only at the true solution x . But this global optimality condition cannot be
guaranteed by the alternation because the common objective function, when regarded in
both primal x and dual Γ∗

i variables simultaneously, is generally neither quasiconvex or
monotonic. (§3.8.0.0.3)

Conversely, a nonzero objective at convergence is a certificate that inversion was not
performed properly. A nonzero objective indicates that a global minimum of a multimodal
objective function could not be found by this alternation. That is a flaw in this particular
iterative algorithm for inversion; not in theory.2.90 A numerical remedy is to reinitialize
the Γ∗

i to different values.

2.89Form a Lagrangian associated with primal problem (P):
L(t , λ) = t + λT(x − tv) = λTx + t(1 − λTv) , λ º

K∗

0

sup
t

L(t , λ) = λTx , 1 − λTv = 0

Dual variable (Lagrange multiplier [266, p.216]) λ generally has a nonnegative sense º for primal
maximization with any cone membership constraint, whereas λ would have a nonpositive sense ¹ were
the primal instead a minimization problem with a cone membership constraint.
2.90The Proof 2.13.12.0.2, that suitable dual extreme directions {Γ∗

j } always exist, means that a global

optimization algorithm would always find the zero objective of alternation (492) (493); hence, the unique
inversion x . But such an algorithm can be combinatorial.


