
Chapter 5

Euclidean Distance Matrix

These results [(995)]were obtained by Schoenberg (1935 ), a surprisingly late
date for such a fundamental property of Euclidean geometry.

−John Clifford Gower [178, §3]

By itself, distance information between many points in Euclidean space is lacking. We
might want to know more; such as, relative or absolute position or dimension of some hull.
A question naturally arising in some fields (e.g, geodesy, economics, genetics, psychology,
biochemistry, engineering) [110] asks what facts can be deduced given only distance
information. What can we know about the underlying points that the distance information
purports to describe? We also ask what it means when given distance information is
incomplete; or suppose the distance information is not reliable, available, or specified
only by certain tolerances (affine inequalities). These questions motivate a study of
interpoint distance, well represented in any spatial dimension by a simple matrix from
linear algebra.5.1 In what follows, we will answer some of these questions via Euclidean
distance matrices.

5.1 e.g, ◦
√

D∈R
N×N , a classical two-dimensional matrix representation of absolute interpoint distance

because its entries (in ordered rows and columns) can be written neatly on a piece of paper. Matrix D
will be reserved throughout to hold distance-square.
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Figure 129: Convex hull of three points (N = 3) is shaded in R3 (n=3). Dotted lines are
imagined vectors to points whose affine dimension is 2.

5.1 EDM

Euclidean space Rn is a finite-dimensional real vector space having an inner product defined
on it, inducing a metric. [243, §3.1] A Euclidean distance matrix, an EDM in RN×N

+ , is
an exhaustive table of distance-square dij between points taken by pair from a list of N
points {xℓ , ℓ=1 . . . N} in Rn ; the squared metric, the measure of distance-square:

dij = ‖xi − xj‖2
2 , 〈xi − xj , xi − xj〉 (964)

Each point is labelled ordinally, hence the row or column index of an EDM, i or j =1 . . . N ,
individually addresses all the points in the list.

Consider the following example of an EDM for the case N = 3 :

D = [dij ] =





d11 d12 d13

d21 d22 d23

d31 d32 d33



 =





0 d12 d13

d12 0 d23

d13 d23 0



 =





0 1 5
1 0 4
5 4 0



 (965)

Matrix D has N 2 entries but only N(N−1)/2 pieces of information. In Figure 129 are
shown three points in R3 that can be arranged in a list to correspond to D in (965). But
such a list is not unique because any rotation, reflection, or translation (§5.5) of those
points would produce the same EDM D .
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5.2 First metric properties

For i,j =1 . . . N , absolute distance between points xi and xj must satisfy the defining
requirements imposed upon any metric space: [243, §1.1] [274, §1.7] namely, for Euclidean
metric

√

dij (§5.4) in Rn

1.
√

dij ≥ 0 , i 6= j nonnegativity

2.
√

dij = 0 ⇔ xi = xj selfdistance

3.
√

dij =
√

dji symmetry

4.
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k triangle inequality

Then all entries of an EDM must be in concord with these Euclidean metric properties:
specifically, each entry must be nonnegative,5.2 the main diagonal must be 0 ,5.3 and an
EDM must be symmetric. The fourth property provides upper and lower bounds for each
entry. Property 4 is true more generally when there are no restrictions on indices i,j,k ,
but furnishes no new information.

5.3 ∃ fifth Euclidean metric property

The four properties of the Euclidean metric provide information insufficient to certify
that a bounded convex polyhedron more complicated than a triangle has a Euclidean
realization. [178, §2] Yet any list of points or the vertices of any bounded convex polyhedron
must conform to the properties.

5.3.0.0.1 Example. Triangle.
Consider the EDM in (965), but missing one of its entries:

D =





0 1 d13

1 0 4
d31 4 0



 (966)

Can we determine unknown entries of D by applying the metric properties? Property 1
demands

√
d13 ,

√
d31 ≥ 0, property 2 requires the main diagonal be 0, while property 3

makes
√

d31 =
√

d13 . The fourth property tells us

1 ≤
√

d13 ≤ 3 (967)

Indeed, described over that closed interval [1, 3] is a family of triangular polyhedra whose
angle at vertex x2 varies from 0 to π radians. So, yes we can determine the unknown
entries of D , but they are not unique; nor should they be from the information given for
this example. 2

5.2Implicit from the terminology,
√

dij ≥ 0 ⇔ dij ≥ 0 is always assumed.
5.3What we call selfdistance, Marsden calls nondegeneracy. [274, §1.6] Kreyszig calls these first metric

properties axioms of the metric; [243, p.4] Blumenthal refers to them as postulates. [52, p.15]
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Figure 130: (a) Complete dimensionless EDM graph. (b) Emphasizing obscured segments
x2x4 , x4x3 , and x2x3 , now only five (2N−3) absolute distances are specified. EDM
so represented is incomplete, missing d14 as in (968), yet the isometric reconstruction
(§5.4.2.2.10) is unique as proved in §5.9.3.0.1 and §5.14.4.1.1. First four properties of
Euclidean metric are not a recipe for reconstruction of this polyhedron.

5.3.0.0.2 Example. Small completion problem, I.
Now consider the polyhedron in Figure 130b formed from an unknown list {x1 , x2 , x3 , x4}.
The corresponding EDM less one critical piece of information, d14 , is given by

D =









0 1 5 d14

1 0 4 1
5 4 0 1

d14 1 1 0









(968)

From metric property 4 we may write a few inequalities for the two triangles common to
d14 ; we find

√
5−1 ≤

√

d14 ≤ 2 (969)

We cannot further narrow those bounds on
√

d14 using only the four metric properties
(§5.8.3.1.1). Yet there is only one possible choice for

√
d14 because points x2 , x3 , x4

must be collinear. All other values of
√

d14 in the interval [
√

5−1, 2] specify impossible
distances in any dimension; id est, in this particular example the triangle inequality
does not yield an interval for

√
d14 over which a family of convex polyhedra can be

reconstructed. 2
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We will return to this simple Example 5.3.0.0.2 to illustrate more elegant methods of
solution in §5.8.3.1.1, §5.9.3.0.1, and §5.14.4.1.1. Until then, we can deduce some general
principles from the foregoing examples:

� Unknown dij of an EDM are not necessarily uniquely determinable.

� The triangle inequality does not produce necessarily tight bounds.5.4

� Four Euclidean metric properties are insufficient for reconstruction.

5.3.1 Lookahead

There must exist at least one requirement more than the four properties of the Euclidean
metric that makes them altogether necessary and sufficient to certify realizability of
bounded convex polyhedra. Indeed, there are infinitely many more; there are precisely
N +1 necessary and sufficient Euclidean metric requirements for N points constituting a
generating list (§2.3.2). Here is the fifth requirement:

5.3.1.0.1 Fifth Euclidean metric property. Relative-angle inequality.
(confer §5.14.2.1.1) Augmenting the four fundamental properties of the Euclidean metric
in Rn, for all i, j, ℓ 6= k∈{1 . . . N} , i<j <ℓ , and for N ≥ 4 distinct points {xk} , the
inequalities

cos(θikℓ + θℓkj) ≤ cos θikj ≤ cos(θikℓ − θℓkj)

0 ≤ θikℓ , θℓkj , θikj ≤ π
(970)

where θikj = θjki represents angle between vectors at vertex xk (1042) (Figure 131),
must be satisfied at each point xk regardless of affine dimension. ⋄

We will explore this in §5.14. One of our early goals is to determine matrix criteria
that subsume all the Euclidean metric properties and any further requirements. Looking
ahead, we will find (1321) (995) (999)

−zTDz ≥ 0
1Tz = 0

(∀ ‖z‖ = 1)

D ∈ SN
h















⇔ D ∈ EDMN (971)

where the convex cone of Euclidean distance matrices EDMN ⊆ SN
h belongs to the subspace

of symmetric hollow5.5 matrices (§2.2.3.0.1). (Numerical test isedm(D) provided on
Wıκımization [408].) Having found equivalent matrix criteria, we will see there is a
bridge from bounded convex polyhedra to EDMs in §5.9 .5.6

Now we develop some invaluable concepts, moving toward a link of the Euclidean
metric properties to matrix criteria.

5.4The term tight with reference to an inequality means equality is achievable.
5.5 0 main diagonal.
5.6From an EDM, a generating list (§2.3.2, §2.12.2) for a polyhedron can be found (§5.12) correct to

within a rotation, reflection, and translation (§5.5).
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Figure 131: Fifth Euclidean metric property nomenclature. Each angle θ is made by
a vector pair at vertex k while i , j , k, ℓ index four points at the vertices of a generally
irregular tetrahedron. The fifth property is necessary for realization of four or more points;
a reckoning by three angles in any dimension. Together with the first four Euclidean metric
properties, this fifth property is necessary and sufficient for realization of four points.
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5.4 EDM definition

Ascribe points in a list {xℓ ∈ Rn, ℓ=1 . . . N} to the columns of a matrix

X = [x1 · · · xN ] ∈ Rn×N (76)

where N is regarded as cardinality of list X . When matrix D=[dij ] is an EDM, its entries
must be related to those points constituting the list by the Euclidean distance-square: for
i , j =1 . . . N (§A.1.1 no.33)

dij = ‖xi − xj‖2 = (xi − xj)
T(xi − xj) = ‖xi‖2 + ‖xj‖2 − 2xT

i xj

=
[

xT
i xT

j

]

[

I −I
−I I

] [

xi

xj

]

= vec(X)T(Φij ⊗ I ) vec X = 〈Φij , XTX 〉

(972)

where

vec X =











x1

x2

...
xN











∈ RnN (973)

and where ⊗ signifies Kronecker product (§D.1.2.1). Φij ⊗ I is positive semidefinite (1571)
having I∈ Sn in its iith and jj th block of entries while −I∈ Sn fills its ij th and jith block;
id est,

Φij , δ((eie
T
j + ej e

T
i )1) − (eie

T
j + ej e

T
i ) ∈ SN

+

= eie
T
i + eje

T
j − eie

T
j − eje

T
i

= (ei − ej)(ei − ej)
T

(974)

where {ei∈RN , i=1 . . . N} is the set of standard basis vectors. Thus each entry dij is a
convex quadratic function (§A.4.0.0.2) of vec X (37). [325, §6]

The collection of all Euclidean distance matrices EDMN is a convex subset of RN×N
+

called the EDM cone (§6, Figure 166 p.483);

0 ∈ EDMN ⊆ SN
h ∩ RN×N

+ ⊂ SN (975)

An EDM D must be expressible as a function of some list X ; id est, it must have the
form

D(X) , δ(XTX)1T+ 1δ(XTX)T− 2XTX ∈ EDMN (976)

= [vec(X)T(Φij ⊗ I ) vec X , i, j =1 . . . N ] (977)

Function D(X) will make an EDM given any X∈ Rn×N , conversely, but D(X) is not a
convex function of X (§5.4.1). Now the EDM cone may be described:

EDMN =
{

D(X) | X∈ RN−1×N
}

(978)

Expression D(X) is a matrix definition of EDM and so conforms to the Euclidean metric
properties:
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Nonnegativity of EDM entries (property 1, §5.2) is obvious from the distance-square
definition (972), so holds for any D expressible in the form D(X) in (976).

When we say D is an EDM, reading from (976), it implicitly means the main diagonal
must be 0 (property 2, selfdistance) and D must be symmetric (property 3); δ(D) = 0
and DT = D or, equivalently, D∈ SN

h are necessary matrix criteria.

5.4.0.1 homogeneity

Function D(X) is homogeneous in the sense, for ζ∈R

◦
√

D(ζX) = |ζ| ◦
√

D(X) (979)

where the positive square root is entrywise (◦).
Any nonnegatively scaled EDM remains an EDM; id est, the matrix class EDM is

invariant to nonnegative scaling (αD(X) for α≥0) because all EDMs of dimension N
constitute a convex cone EDMN (§6, Figure 158).

5.4.1 −V T
N D(X)VN convexity

We saw that EDM entries dij

([

xi

xj

])

are convex quadratic functions. Yet −D(X) (976)

is not a quasiconvex function of matrix X∈ Rn×N because the second directional derivative
(§3.8)

− d2

dt2

∣

∣

∣

∣

t=0

D(X+ t Y ) = 2
(

−δ(Y TY )1T − 1δ(Y TY )T + 2 Y TY
)

(980)

is indefinite for any Y ∈ Rn×N since its main diagonal is 0. [174, §4.2.8] [218, §7.1 prob.2]
Hence −D(X) can neither be convex in X .

The outcome is different when instead we consider

−V T
N D(X)VN = 2V T

NXTXVN (981)

where we introduce the full-rank skinny Schoenberg auxiliary matrix (§B.4.2)

VN ,
1√
2















−1 −1 · · · −1
1 0

1
. . .

0 1















=
1√
2

[

−1T

I

]

∈ RN×N−1 (982)

(N (VN )=0) having range

R(VN ) = N (1T) , V T
N 1 = 0 (983)

Matrix-valued function (981) meets the criterion for convexity in §3.7.3.0.2 over its domain
that is all of Rn×N ; videlicet, for any Y ∈ Rn×N

− d2

dt2
V T
N D(X + t Y )VN = 4V T

N Y TY VN º 0 (984)
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Quadratic matrix-valued function −V T
N D(X)VN is therefore convex in X achieving its

minimum, with respect to a positive semidefinite cone (§2.7.2.2), at X = 0. When
the penultimate number of points exceeds the dimension of the space n < N−1, strict
convexity of the quadratic (981) becomes impossible because (984) could not then be
positive definite.

5.4.2 Gram-form EDM definition

Positive semidefinite matrix XTX in (976), formed from inner product of list X , is known
as a Gram matrix ; [266, §3.6]

G , XTX =







xT
1
...

xT
N







[x1 · · · xN ]

=



















‖x1‖2 xT
1x2 xT

1x3 · · · xT
1xN

xT
2x1 ‖x2‖2 xT

2x3 · · · xT
2xN

xT
3x1 xT

3x2 ‖x3‖2 . . . xT
3xN

...
...

. . .
. . .

...
xT
Nx1 xT

Nx2 xT
Nx3 · · · ‖xN‖2



















∈ SN
+

= δ





















‖x1‖
‖x2‖

...
‖xN‖







































1 cos ψ12 cos ψ13 · · · cos ψ1N

cos ψ12 1 cos ψ23 · · · cos ψ2N

cos ψ13 cos ψ23 1
. . . cos ψ3N

...
...

. . .
. . .

...
cos ψ1N cos ψ2N cos ψ3N · · · 1



















δ





















‖x1‖
‖x2‖

...
‖xN‖





















,
√

δ2(G) Ψ
√

δ2(G)

(985)

where ψij (1004) is angle between vectors xi and xj , and where δ2 denotes a diagonal
matrix in this case. Positive semidefiniteness of interpoint angle matrix Ψ implies positive
semidefiniteness of Gram matrix G ;

G º 0 ⇐ Ψ º 0 (986)

When δ2(G) is nonsingular, then Gº 0 ⇔ Ψº 0. (§A.3.1.0.5)
Distance-square dij (972) is related to Gram matrix entries GT = G , [gij ]

dij = gii + gjj − 2gij

= 〈Φij , G〉 (987)

where Φij is defined in (974). Hence the linear EDM definition

D(G) , δ(G)1T+ 1δ(G)T− 2G ∈ EDMN

= [〈Φij , G〉 , i , j =1 . . . N ]

}

⇐ G º 0 (988)

The EDM cone may be described, (confer (1077)(1083))

EDMN =
{

D(G) | G ∈ SN
+

}

(989)
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5.4.2.1 First point at origin

Assume the first point x1 in an unknown list X resides at the origin;

Xe1 = 0 ⇔ Ge1 = 0 (990)

Consider the symmetric translation (I − 1eT
1 )D(G)(I − e11

T) that shifts the first row
and column of D(G) to the origin; setting Gram-form EDM operator D(G) = D for
convenience,

−
(

D − (De11
T+ 1eT

1D) + 1eT
1De11

T
)

1
2 = G − (Ge11

T+ 1eT
1G) + 1eT

1Ge11
T (991)

where

e1 ,







1
0...
0






(992)

is the first vector from the standard basis. Then it follows for D∈ SN
h

G = −
(

D − (De11
T+ 1eT

1D)
)

1
2 , x1 = 0

= −
[

0
√

2VN
]T

D
[

0
√

2VN
]

1
2

=

[

0 0T

0 −V T
NDVN

]

V T
N GVN = −V T

NDVN 1
2 ∀X

(993)

where
I − e11

T =
[

0
√

2VN
]

(994)

is a projector nonorthogonally projecting (§E.1) on subspace

SN
1 = {G∈ SN | Ge1 = 0}

=
{

[

0
√

2VN
]T

Y
[

0
√

2VN
]

| Y ∈ SN
} (2117)

in the Euclidean sense. From (993) we get sufficiency of the first matrix criterion for an
EDM proved by Schoenberg in 1935; [330]5.7

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(995)

We provide a rigorous complete more geometric proof of this fundamental Schoenberg
criterion in §5.9.1.0.4. [408, isedm(D)]

By substituting G =

[

0 0T

0 −V T
NDVN

]

(993) into D(G) (988),

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1097)

assuming x1 = 0. Details of this bijection are provided in §5.6.2.

5.7From (983) we know R(VN )=N (1T) , so (995) is the same as (971). In fact, any matrix V in place of
VN will satisfy (995) whenever R(V )=R(VN )=N (1T). But VN is the matrix implicit in Schoenberg’s
seminal exposition.
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5.4.2.2 0 geometric center

Assume the geometric center (§5.5.1.0.1) of an unknown list X is the origin;

X1 = 0 ⇔ G1 = 0 (996)

Now consider the calculation (I − 1
N 11T)D(G)(I − 1

N 11T) , a geometric centering or
projection operation. (§E.7.2.0.2) Setting D(G) = D for convenience as in §5.4.2.1,

G = −
(

D − 1
N (D11T+ 11TD) + 1

N2 11TD11T
)

1
2 , X1 = 0

= −V D V 1
2

V GV = −V D V 1
2 ∀X

(997)

where more properties of the auxiliary (geometric centering, projection) matrix

V , I − 1

N
11T ∈ SN (998)

are found in §B.4. V GV may be regarded as a covariance matrix of means 0. From (997)
and the assumption D∈ SN

h we get sufficiency of the more popular form of Schoenberg
criterion:

D ∈ EDMN ⇔
{ −V D V ∈ SN

+

D ∈ SN
h

(999)

Of particular utility when D∈EDMN is the fact, (§B.4.2 no.20) (972)

tr
(

−V D V 1
2

)

= 1
2N

∑

i,j

dij = 1
2N vec(X)T

(

∑

i,j

Φij ⊗ I

)

vec X

= tr(V GV ) , G º 0

= tr G =
N
∑

ℓ=1

‖xℓ‖2 = ‖X‖2
F , X1 = 0

(1000)

where
∑

Φij ∈ SN
+ (974), therefore convex in vec X . We will find this trace useful as a

heuristic to minimize affine dimension of an unknown list arranged columnar in X (§7.2.2),
but it tends to facilitate reconstruction of a list configuration having least energy; id est,
it compacts a reconstructed list by minimizing total norm-square of the vertices.

By substituting G=−V D V 1
2 (997) into D(G) (988), assuming X1=0

D = δ
(

−V D V 1
2

)

1T + 1δ
(

−V D V 1
2

)T − 2
(

−V D V 1
2

)

(1087)

Details of this bijection can be found in §5.6.1.1.
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5.4.2.2.1 Example. Hypersphere.
These foregoing relationships allow combination of distance and Gram constraints in any
optimization problem we might pose:

� Interpoint angle Ψ can be constrained by fixing all the individual point lengths
◦
√

δ(G) ; then

Ψ = −
√

δ2(G)
−1

V D V 1
2

√

δ2(G)
−1

, X1 = 0 (1001)

� (confer §5.9.1.0.3, (1186) (1330)) Constraining all main diagonal entries gii of a Gram
matrix to 1, for example, is equivalent to the constraint that all points lie on a
hypersphere of radius 1 centered at the origin.

D = 2(g1111T− G) ∈ EDMN (1002)

Requiring 0 geometric center then becomes equivalent to the constraint: D1 = 2N1.
[93, p.116] Any further constraint on that Gram matrix applies only to interpoint
angle matrix Ψ = G .

Because any point list may be constrained to lie on a hypersphere boundary whose affine
dimension exceeds that of the list, a Gram matrix may always be constrained to have equal
positive values along its main diagonal. (Laura Klanfer 1933 [330, §3]) This observation
renewed interest in the elliptope (§5.9.1.0.1). 2

5.4.2.2.2 Example. List-member constraints via Gram matrix.
Capitalizing on identity (997) relating Gram and EDM D matrices, a constraint set such
as

tr
(

− 1
2V D V eie

T
i

)

= ‖xi‖2

tr
(

− 1
2V D V (eie

T
j + eje

T
i ) 1

2

)

= xT
i xj

tr
(

− 1
2V D V eje

T
j

)

= ‖xj‖2











(1003)

relates list member xi to xj to within an isometry through inner-product identity
[419, §1-7]

cos ψij =
xT

i xj

‖xi‖ ‖xj‖
(1004)

where ψij is angle between the two vectors as in (985). For M list members, there total
M(M + 1)/2 such constraints. Angle constraints are incorporated in Example 5.4.2.2.5
and Example 5.4.2.2.13. 2

5.4.2.2.3 Example. Gram matrix as optimization problem.
Consider the academic problem of finding a Gram matrix (997) subject to constraints on
each and every entry of the corresponding EDM:

find
D∈SN

h

−V D V 1
2 ∈ SN

subject to
〈

D , (eie
T
j + eje

T
i ) 1

2

〉

= ďij , i , j =1 . . . N , i < j

−V D V º 0

(1005)
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Figure 132: Rendering of Fermat point in acrylic on canvas by Suman Vaze. Three circles
intersect at Fermat point of minimum total distance from three vertices of (and interior
to) red/black/white triangle.

where the ďij are given nonnegative constants. EDM D can, of course, be replaced with
the equivalent Gram-form (988). Requiring only the selfadjointness property (1507) of the
main-diagonal linear operator δ we get, for A∈ SN

〈D , A〉 =
〈

δ(G)1T+ 1δ(G)T− 2G , A
〉

= 2 〈G , δ(A1) − A〉 (1006)

Then the problem equivalent to (1005) becomes, for G∈ SN
c ⇔ G1=0

find
G∈SN

c

G ∈ SN

subject to
〈

G , δ
(

(eie
T
j + eje

T
i )1

)

− (eie
T
j + eje

T
i )

〉

= ďij , i , j =1 . . . N , i < j

G º 0 (1007)

Barvinok’s Proposition 2.9.3.0.1 predicts existence for either formulation (1005) or (1007)
such that implicit equality constraints induced by subspace membership are ignored

rankG , rankV D V ≤
⌊

√

8(N(N−1)/2) + 1 − 1

2

⌋

= N − 1 (1008)

because, in each case, the Gram matrix is confined to a face of positive semidefinite cone
SN

+ isomorphic with SN−1
+ (§6.6.1). (§E.7.2.0.2) This bound is tight (§5.7.1.1) and is the

greatest upper bound.5.8 2

5.8 −V DV |N←1 = 0 (§B.4.1)

http://vazeart.googlepages.com/theorems&constructions
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5.4.2.2.4 Example. First duality.
Kuhn reports that the first dual optimization problem5.9 to be recorded in the literature
dates back to 1755. [396] Perhaps more intriguing is the fact: this earliest instance of
duality is a two-dimensional Euclidean distance geometry problem known as Fermat point
(Figure 132) named after the French mathematician. Given N distinct points in the plane
{xi∈R2, i=1 . . . N} , the Fermat point y is an optimal solution to

minimize
y

N
∑

i=1

‖y − xi‖ (1009)

a convex minimization of total distance. The historically first dual problem formulation
asks for the smallest equilateral triangle encompassing (N = 3) three points xi . Another
problem dual to (1009) (Kuhn 1967)

maximize
{zi}

N
∑

i=1

〈zi , xi〉

subject to
N
∑

i=1

zi = 0

‖zi‖ ≤ 1 ∀ i

(1010)

has interpretation as minimization of work required to balance potential energy in an
N -way tug-of-war between equally matched opponents situated at {xi}. [413]

It is not so straightforward to write the Fermat point problem (1009) equivalently in
terms of a Gram matrix from this section. Squaring instead

minimize
α

N
∑

i=1

‖α − xi‖2 ≡
minimize
D∈SN+1

〈−V , D〉
subject to 〈D , eie

T
j + ej e

T
i 〉 1

2 = ďij ∀(i , j)∈ I
−V D V º 0

(1011)

yields an inequivalent convex geometric centering problem whose equality constraints
comprise EDM D main-diagonal zeros and known distances-square.5.10 Going the other
way, a problem dual to total distance-square maximization (Example 6.7.0.0.1) is a
penultimate minimum eigenvalue problem having application to PageRank calculation
by search engines [247, §4]. [357]

Fermat function (1009) is empirically compared with (1011) in [63, §8.7.3], but for
multiple unknowns in R2, where propensity of (1009) for producing zero distance
between unknowns is revealed. An optimal solution to (1009) gravitates toward gradient
discontinuities (§D.2.1), as in Figure 76, whereas optimal solution to (1011) is less compact
in the unknowns.5.11 2

5.9By dual problem is meant, in the strongest sense: the optimal objective achieved by a maximization
problem, dual to a given minimization problem (related to each other by a Lagrangian function), is
always equal to the optimal objective achieved by the minimization. (Figure 62 Example 2.13.1.0.3) A
dual problem is always convex.
5.10 α⋆ is geometric center of points xi (1061). For three points, I = {1, 2, 3} ; optimal affine dimension
(§5.7) must be 2 because a third dimension can only increase total distance. Minimization of 〈−V, D〉 is
a heuristic for rank minimization. (§7.2.2)
5.11Optimal solution to (1009) has mechanical interpretation in terms of interconnecting springs with
constant force when distance is nonzero; otherwise, 0 force. Problem (1011) is interpreted instead using
linear springs.

http://www.convexoptimization.com/wikimization/index.php/Harold_W._Kuhn
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x1

x2

x3

x4

x5

x6

Figure 133: Arbitrary hexagon in R3 whose vertices are labelled clockwise.

5.4.2.2.5 Example. Hexagon.
Barvinok [26, §2.6] poses a problem in geometric realizability of an arbitrary hexagon
(Figure 133) having:

1. prescribed (one-dimensional) face-lengths l

2. prescribed angles ϕ between the three pairs of opposing faces

3. a constraint on the sum of norm-square of each and every vertex x ;

ten affine equality constraints in all on a Gram matrix G∈ S6 (997). Let’s realize this as
a convex feasibility problem (with constraints written in the same order) also assuming 0
geometric center (996):

find
D∈S6

h

−V D V 1
2 ∈ S6

subject to tr
(

D(eie
T
j + eje

T
i ) 1

2

)

= l2ij , j−1 = (i = 1 . . . 6)mod 6

tr
(

− 1
2V D V (Ai + AT

i ) 1
2

)

= cos ϕi , i = 1, 2, 3

tr(− 1
2V D V ) = 1

−V D V º 0

(1012)

where, for Ai∈ R6×6 (1004)

A1 = (e1 − e6)(e3 − e4)
T/(l61 l34)

A2 = (e2 − e1)(e4 − e5)
T/(l12 l45)

A3 = (e3 − e2)(e5 − e6)
T/(l23 l56)

(1013)

and where the first constraint on length-square l2ij can be equivalently written as a

constraint on the Gram matrix −V D V 1
2 via (1006). We show how to numerically solve

such a problem by alternating projection in §E.10.2.1.1. Barvinok’s Proposition 2.9.3.0.1
asserts existence of a list, corresponding to Gram matrix G solving this feasibility problem,
whose affine dimension (§5.7.1.1) does not exceed 3 because the convex feasible set is
bounded by the third constraint tr(− 1

2V D V ) = 1 (1000). 2
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Figure 134: Sphere-packing illustration from [412, kissing number ]. Translucent balls
illustrated all have the same diameter.

5.4.2.2.6 Example. Kissing number of sphere packing.
Two nonoverlapping Euclidean balls are said to kiss if they touch. An elementary
geometrical problem can be posed: Given hyperspheres, each having the same diameter 1,
how many hyperspheres can simultaneously kiss one central hypersphere? [433] Noncentral
hyperspheres are allowed, but not required, to kiss.

As posed, the problem seeks the maximal number of spheres K kissing a central sphere
in a particular dimension. The total number of spheres is N = K + 1. In one dimension,
the answer to this kissing problem is 2. In two dimensions, 6. (Figure 9)

The question was presented, in three dimensions, to Isaac Newton by David Gregory
in the context of celestial mechanics. And so was born a controversy between the two
scholars on the campus of Trinity College Cambridge in 1694. Newton correctly identified
the kissing number as 12 (Figure 134) while Gregory argued for 13. Their dispute was
finally resolved in 1953 by Schütte & van der Waerden. [316] In 2003, Oleg Musin tightened
the upper bound on kissing number K in four dimensions from 25 to K = 24 by refining a
method of Philippe Delsarte from 1973. Delsarte’s method provides an infinite number [17]
of linear inequalities necessary for converting a rank-constrained semidefinite program5.12

to a linear program.5.13 [289]
There are no proofs known for kissing number in higher dimension excepting dimensions

eight and twenty four. Interest persists [88] because sphere packing has found application
to error correcting codes from the fields of communications and information theory;
specifically to quantum computing. [96]

Translating this problem to an EDM graph realization (Figure 130, Figure 135) is
suggested by Pfender & Ziegler. Imagine the centers of each sphere are connected by line
segments. Then the distance between centers must obey simple criteria: Each sphere
touching the central sphere has a line segment of length exactly 1 joining its center to

5.12 whose feasible set belongs to that subset of an elliptope (§5.9.1.0.1) bounded above by some desired
rank.
5.13Simplex-method solvers for linear programs produce numerically better results than contemporary
log-barrier (interior-point method) solvers, for semidefinite programs, by about 7 orders of magnitude;
they are far more predisposed to vertex solutions [98, p.158].

http://mathworld.wolfram.com/KissingNumber.html
http://www.convexoptimization.com/wikimization/index.php/Isaac_Newton
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the central sphere’s center. All spheres, excepting the central sphere, must have centers
separated by a distance of at least 1.

From this perspective, the kissing problem can be posed as a semidefinite program.
Assign index 1 to the central sphere assuming a total of N spheres:

minimize
D∈SN

− tr(W V T
NDVN )

subject to D1j = 1 , j = 2 . . . N

Dij ≥ 1 , 2 ≤ i < j = 3 . . . N

D ∈ EDMN

(1014)

Then kissing number
K = Nmax − 1 (1015)

is found from the maximal number N of spheres that solve this semidefinite program in a
given affine dimension r whose realization is assured by 0 optimal objective. Matrix W is
constant, in this program, determined by a method disclosed in §4.4.1. Matrix W ∈ SN−1

+

can be interpreted as direction of search through the positive semidefinite cone for a rank-r
optimal solution −V T

ND⋆VN ∈ SN−1
+ : In one dimension, optimal direction matrix W ⋆ has

rank = K− r = 2−1 = 1 ;

W ⋆ =

[

1 1
1 1

]

1

2
(1016)

In two dimensions, optimal W ⋆ has rank = K− r = 6−2 = 4 ;

W ⋆ =

















4 1 2 −1 −1 1
1 4 −1 −1 2 1
2 −1 4 1 1 −1

−1 −1 1 4 1 2
−1 2 1 1 4 −1

1 1 −1 2 −1 4

















1

6
(1017)

In three dimensions, we leave it an exercise to find a rational optimal direction matrix W ⋆

having rank = K− r = 12−3 = 9. Here is a full-rank rational optimal direction matrix:

W
⋆ =









































9 1 −2 −1 3 −1 −1 1 2 1 −2 1
1 9 3 −1 −1 1 1 −2 1 2 −1 −1

−2 3 9 1 2 −1 −1 2 −1 −1 1 2
−1 −1 1 9 1 −1 1 −1 3 2 −1 1

3 −1 2 1 9 1 1 −1 −1 −1 1 −1
−1 1 −1 −1 1 9 2 −1 2 −1 2 3
−1 1 −1 1 1 2 9 3 −1 1 −2 −1

1 −2 2 −1 −1 −1 3 9 2 −1 1 1
2 1 −1 3 −1 2 −1 2 9 −1 1 −1
1 2 −1 2 −1 −1 1 −1 −1 9 3 1

−2 −1 1 −1 1 2 −2 1 1 3 9 −1
1 −1 2 1 −1 3 −1 1 −1 1 −1 9









































1

12
(1018)

A four-dimensional solution also has rational optimal direction matrix W ⋆ with
rank = K− r = 24−4 = 20 ;
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W
⋆

=























































































20 −2 2 −2 0 0 −2 2 2 −2 2 0 2 4 2 2 0 −2 −2 −2 2 0 0 −2
−2 20 2 0 2 −2 −2 0 2 0 2 −2 0 2 −2 4 2 −2 2 0 0 −2 2 −2

2 2 20 2 2 2 0 2 0 −2 0 2 −2 −2 0 −2 −2 0 0 2 −2 −2 −2 4
−2 0 2 20 −2 2 −2 0 −2 0 2 −2 4 2 2 0 −2 2 −2 0 0 2 2 −2

0 2 2 −2 20 0 2 −2 −2 2 −2 0 2 0 2 −2 0 2 −2 −2 2 4 0 −2
0 −2 2 2 0 20 2 −2 2 2 −2 0 −2 0 −2 2 4 −2 2 −2 2 0 0 −2

−2 −2 0 −2 2 2 20 2 0 −2 4 −2 2 2 0 2 −2 0 0 2 −2 −2 2 0
2 0 2 0 −2 −2 2 20 −2 4 −2 −2 0 −2 −2 0 2 2 2 0 0 2 2 −2
2 2 0 −2 −2 2 0 −2 20 2 0 −2 2 −2 0 −2 −2 4 0 2 −2 2 2 0

−2 0 −2 0 2 2 −2 4 2 20 2 2 0 2 2 0 −2 −2 −2 0 0 −2 −2 2
2 2 0 2 −2 −2 4 −2 0 2 20 2 −2 −2 0 −2 2 0 0 −2 2 2 −2 0
0 −2 2 −2 0 0 −2 −2 −2 2 2 20 2 0 −2 2 0 2 2 2 −2 0 4 −2
2 0 −2 4 2 −2 2 0 2 0 −2 2 20 −2 −2 0 2 −2 2 0 0 −2 −2 2
4 2 −2 2 0 0 2 −2 −2 2 −2 0 −2 20 −2 −2 0 2 2 2 −2 0 0 2
2 −2 0 2 2 −2 0 −2 0 2 0 −2 −2 −2 20 2 2 0 4 2 −2 −2 2 0
2 4 −2 0 −2 2 2 0 −2 0 −2 2 0 −2 2 20 −2 2 −2 0 0 2 −2 2
0 2 −2 −2 0 4 −2 2 −2 −2 2 0 2 0 2 −2 20 2 −2 2 −2 0 0 2

−2 −2 0 2 2 −2 0 2 4 −2 0 2 −2 2 0 2 2 20 0 −2 2 −2 −2 0
−2 2 0 −2 −2 2 0 2 0 −2 0 2 2 2 4 −2 −2 0 20 −2 2 2 −2 0
−2 0 2 0 −2 −2 2 0 2 0 −2 2 0 2 2 0 2 −2 −2 20 4 2 −2 −2

2 0 −2 0 2 2 −2 0 −2 0 2 −2 0 −2 −2 0 −2 2 2 4 20 −2 2 2
0 −2 −2 2 4 0 −2 2 2 −2 2 0 −2 0 −2 2 0 −2 2 2 −2 20 0 2
0 2 −2 2 0 0 2 2 2 −2 −2 4 −2 0 2 −2 0 −2 −2 −2 2 0 20 2

−2 −2 4 −2 −2 −2 0 −2 0 2 0 −2 2 2 0 2 2 0 0 −2 2 2 2 20























































































1

24

(1019)

but these direction matrices are not unique and their precision not critical. Here is an
optimal four-dimensional point list,5.14 in Matlab output format, reconstructed by a
method in §5.12:

Columns 1 through 6

X = 0 -0.1983 -0.4584 0.1657 0.9399 0.7416

0 0.6863 0.2936 0.6239 -0.2936 0.3927

0 -0.4835 0.8146 -0.6448 0.0611 -0.4224

0 0.5059 0.2004 -0.4093 -0.1632 0.3427

Columns 7 through 12

-0.4815 -0.9399 -0.7416 0.1983 0.4584 -0.2832

0 0.2936 -0.3927 -0.6863 -0.2936 -0.6863

-0.8756 -0.0611 0.4224 0.4835 -0.8146 -0.3922

-0.0372 0.1632 -0.3427 -0.5059 -0.2004 -0.5431

Columns 13 through 18

0.2832 -0.2926 -0.6473 0.0943 0.3640 -0.3640

0.6863 0.9176 -0.6239 -0.2313 -0.0624 0.0624

0.3922 0.1698 -0.2309 -0.6533 -0.1613 0.1613

0.5431 -0.2088 0.3721 0.7147 -0.9152 0.9152

Columns 19 through 25

-0.0943 0.6473 -0.1657 0.2926 -0.5759 0.5759 0.4815

0.2313 0.6239 -0.6239 -0.9176 0.2313 -0.2313 0

0.6533 0.2309 0.6448 -0.1698 -0.2224 0.2224 0.8756

-0.7147 -0.3721 0.4093 0.2088 -0.7520 0.7520 0.0372

5.14An optimal five-dimensional point list is known: The answer was known at least 175 years
ago. I believe Gauss knew it. Moreover, Korkine & Zolotarev proved in 1882 that D5 is the
densest lattice in five dimensions. So they proved that if a kissing arrangement in five dimensions
can be extended to some lattice, then k(5)= 40. Of course, the conjecture in the general
case also is: k(5)= 40. You would like to see coordinates? Easily. Let A=

√
2 . Then

p(1)=(A, A, 0, 0, 0), p(2)=(−A, A, 0, 0, 0), p(3)=(A,−A, 0, 0, 0), . . . p(40)=(0, 0, 0,−A,−A) ; i.e., we
are considering points with coordinates that have two A and three 0 with any choice of signs and any
ordering of the coordinates; the same coordinates-expression in dimensions 3 and 4.

The first miracle happens in dimension 6. There are better packings than D6 (Conjecture: k(6)= 72).
It’s a real miracle how dense the packing is in eight dimensions (E8=Korkine & Zolotarev packing that
was discovered in 1880s) and especially in dimension 24, that is the so-called Leech lattice.

Actually, people in coding theory have conjectures on the kissing numbers for dimensions up to 32 (or
even greater?). However, sometimes they found better lower bounds. I know that Ericson & Zinoviev a
few years ago discovered (by hand, no computer) in dimensions 13 and 14 better kissing arrangements
than were known before. −Oleg Musin
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The r nonzero optimal eigenvalues of −V T
ND⋆VN are equal; remaining eigenvalues are

zero as per − tr(W ⋆V T
ND⋆VN ) = 0 (775). Numerical problems begin to arise with matrices

of this size due to interior-point methods of solution to (1014). By eliminating some
equality constraints from the kissing number problem, matrix size can be reduced: From
§5.8.3 we have

−V T
NDVN = 11T− [ 0 I ] D

[

0T

I

]

1
2 (1020)

(which does not hold more generally) where Identity matrix I∈ SN−1 has one less
dimension than EDM D . By defining an EDM principal submatrix

D̂ , [ 0 I ] D

[

0T

I

]

∈ SN−1
h (1021)

so that

−V T
NDVN = 11T− D̂ 1

2 (1022)

we get a convex problem equivalent to (1014)

minimize
D̂∈SK

− tr(WD̂)

subject to D̂ij ≥ 1 , 1 ≤ i < j = 2 . . . K

11T− D̂ 1
2 º 0

δ(D̂) = 0

(1023)

Any feasible solution 11T− D̂ 1
2 belongs to an elliptope (§5.9.1.0.1). 2

5.4.2.2.7 Exercise. Rational optimal kissing direction matrix W ⋆.
Replace (1018) with a rational W ⋆ having rank = K− r = 12−3 = 9, main diagonal 9,
and common denominator 12. H

This next example shows how finding the common point of intersection for three circles
in a plane, a nonlinear problem, has convex expression.

5.4.2.2.8 Example. Trilateration in wireless sensor network. [177]
Given three known absolute point positions in R2 (three anchors x̌2 , x̌3 , x̌4) and only
one unknown point (one sensor x1), the sensor’s absolute position is determined from its
noiseless measured distance-square ďi1 to each of three anchors (Figure 4, Figure 135a).
This trilateration can be expressed as a convex optimization problem in terms of list
X , [x1 x̌2 x̌3 x̌4 ]∈R2×4 and Gram matrix G∈ S4 (985):
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(a) (b)

(c) (d)

x1

x1

x1
x1

x̌2

x̌3 x̌4

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x6

√
d12

√
d13

√
d14

Figure 135: (a) Given three distances indicated with absolute point positions x̌2 , x̌3 , x̌4

known and noncollinear, absolute position of x1 in R2 can be precisely and uniquely
determined by trilateration; solution to a system of nonlinear equations. Dimensionless
EDM graphs (b) (c) (d) represent EDMs in various states of completion. Line
segments represent known absolute distances and may cross without vertex at intersection.
(b) Four-point list must always be embeddable in affine subset having dimension
rankV T

NDVN not exceeding 3. To determine relative position of x2 , x3 , x4 , triangle
inequality is necessary and sufficient (§5.14.1). Knowing all distance information, then (by
injectivity of D (§5.6)) point position x1 is uniquely determined to within an isometry
in any dimension. (c) When fifth point is introduced, only distances to x3 , x4 , x5 are
required to determine relative position of x2 in R2. Graph represents first instance of
missing distance information;

√
d12 . (d) Three distances are absent (

√
d12 ,

√
d13 ,

√
d23 )

from complete set of interpoint distances, yet unique isometric reconstruction (§5.4.2.2.10)
of six points in R2 is certain.
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minimize
G∈S4, X∈R2×4

tr G

subject to tr(GΦi1) = ďi1 , i = 2, 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2, 3, 4

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

X(: , 2:4) = [ x̌2 x̌3 x̌4 ]
[

I X
XT G

]

º 0

(1024)

where
Φij = (ei − ej)(ei − ej)

T∈ SN
+ (974)

and where the constraint on distance-square ďi1 is equivalently written as a constraint on
the Gram matrix via (987). There are 9 linearly independent affine equality constraints
on that Gram matrix while the sensor is constrained, only by dimensioning, to lie in R2.
Although the objective trG of minimization5.15 insures a solution on the boundary of
positive semidefinite cone S4

+ , for this problem, we claim that the set of feasible Gram

matrices forms a line (§2.5.1.1) in isomorphic R10 tangent (§2.1.7.1.2) to the positive
semidefinite cone boundary. (§5.4.2.2.9, confer §4.2.1.3)

By Schur complement (§A.4, §2.9.1.0.1), any feasible G and X provide

G º XTX (1025)

which is a convex relaxation of the desired (nonconvex) equality constraint

[

I X
XT G

]

=

[

I
XT

]

[ I X ]
(1026)

expected positive semidefinite rank-2 under noiseless conditions. But, by (1580), the
relaxation admits

(3 ≥) rank G ≥ rankX (1027)

(a third dimension corresponding to an intersection of three spheres, not circles, were there
noise). If rank of an optimal solution equals 2,

rank

[

I X⋆

X⋆T G⋆

]

= 2 (1028)

then G⋆ = X⋆TX⋆ by Theorem A.4.0.1.3.
As posed, this localization problem does not require affinely independent (Figure 30,

three noncollinear) anchors. Assuming the anchors exhibit no rotational or reflective
symmetry in their affine hull (§5.5.2) and assuming the sensor x1 lies in that affine hull,
then sensor position solution x⋆

1 = X⋆(: , 1) is unique under noiseless measurement. [338]
2

5.15Trace (tr G = 〈I , G〉) minimization is a heuristic for rank minimization. (§7.2.2.1) It
may be interpreted as squashing G which is bounded below by XTX as in (1025); id est,
G−XTXº 0 ⇒ tr G ≥ tr XTX (1578). δ(G−XTX)= 0 ⇔ G=XTX (§A.7.2) ⇒ tr G = tr XTX which
is a condition necessary for equality.
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This preceding transformation of trilateration to a semidefinite program works all the
time ((1028) holds) despite relaxation (1025) because the optimal solution set is a unique
point.

5.4.2.2.9 Proof (sketch). Only the sensor location x1 is unknown. The objective
function together with the equality constraints make a linear system of equations in Gram
matrix variable G

trG = ‖x1‖2 + ‖x̌2‖2 + ‖x̌3‖2 + ‖x̌4‖2

tr(GΦi1) = ďi1 , i = 2, 3, 4

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2, 3, 4

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3, 4

(1029)

which is invertible:

svec G =
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






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


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(
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(
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)T


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




















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
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
























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ď41
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x̌T
2 x̌3
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
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




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

(1030)

That line in the ambient space S4 of G , claimed on page 377, is traced by ‖x1‖2∈R on
the right-hand side, as it turns out. One must show this line to be tangential (§2.1.7.1.2)
to S4

+ in order to prove uniqueness. Tangency is possible for affine dimension 1 or 2 while
its occurrence depends completely on the known measurement data. ¥

But as soon as significant noise is introduced or whenever distance data is incomplete, such
problems can remain convex although the set of all optimal solutions generally becomes a
convex set bigger than a single point (and still containing the noiseless solution).

5.4.2.2.10 Definition. Isometric reconstruction. (confer §5.5.3)
Isometric reconstruction from an EDM means building a list X correct to within a
rotation, reflection, and translation; in other terms, reconstruction of relative position,
correct to within an isometry, correct to within a rigid transformation. △

How much distance information is needed to uniquely localize a sensor (to recover
actual relative position)? The narrative in Figure 135 helps dispel any notion of
distance data proliferation in low affine dimension (r<N−2) .5.16 Huang, Liang,

5.16When affine dimension r reaches N− 2, then all distances-square in the EDM must be known for
unique isometric reconstruction in R

r ; going the other way, when r = 1 then the condition that the
dimensionless EDM graph be connected is necessary and sufficient. [203, §2.2]
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and Pardalos [221, §4.2] claim O(2N ) distances is a least lower bound (independent of
affine dimension r) for unique isometric reconstruction; achievable under certain noiseless
conditions on graph connectivity and point position. Alfakih shows how to ascertain
uniqueness over all affine dimensions via Gale matrix. [10] [5] [6] Figure 130b (p.360,
from small completion problem Example 5.3.0.0.2) is an example in R2 requiring only
2N− 3 = 5 known symmetric entries for unique isometric reconstruction, although the
four-point example in Figure 135b will not yield a unique reconstruction when any one of
the distances is left unspecified.

The list represented by the particular dimensionless EDM graph in Figure 136, having
only 2N− 3 = 9 absolute distances specified, has only one realization in R2 but has
more realizations in higher dimensions. Unique r-dimensional isometric reconstruction
by semidefinite relaxation like (1025) occurs iff realization in Rr is unique and there exist
no nontrivial higher-dimensional realizations. [338] For sake of reference, we provide the
complete corresponding EDM:

D =

















0 50641 56129 8245 18457 26645
50641 0 49300 25994 8810 20612
56129 49300 0 24202 31330 9160
8245 25994 24202 0 4680 5290

18457 8810 31330 4680 0 6658
26645 20612 9160 5290 6658 0

















(1031)

We consider paucity of distance information in this next example which shows it is
possible to recover exact relative position given incomplete noiseless distance information.
An ad hoc method for recovery of the least-rank optimal solution under noiseless conditions
is introduced:

5.4.2.2.11 Example. Tandem trilateration in wireless sensor network.
Given three known absolute point-positions in R2 (three anchors x̌3 , x̌4 , x̌5), two
unknown sensors x1 , x2∈R2 have absolute position determinable from their noiseless
distances-square (as indicated in Figure 137) assuming the anchors exhibit no rotational
or reflective symmetry in their affine hull (§5.5.2). This example differs from
Example 5.4.2.2.8 insofar as trilateration of each sensor is now in terms of one unknown
position: the other sensor. We express this localization as a convex optimization problem
(a semidefinite program, §4.1) in terms of list X , [x1 x2 x̌3 x̌4 x̌5 ]∈R2×5 and Gram
matrix G∈ S5 (985) via relaxation (1025):

minimize
G∈S5, X∈R2×5

tr G

subject to tr(GΦi1) = ďi1 , i = 2, 4, 5

tr(GΦi2) = ďi2 , i = 3, 5

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 3, 4, 5

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 3≤ i < j = 4, 5

X(: , 3:5) = [ x̌3 x̌4 x̌5 ]
[

I X
XT G

]

º 0

(1032)
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x5

x2
x3

x1

x4

x6

Figure 136: (confer (1031)) Incomplete EDM corresponding to this dimensionless EDM
graph (drawn freehand; no symmetry intended) provides unique isometric reconstruction
in R2.

x̌4

x̌5
x̌3

x1

x2

Figure 137: (Ye) Two sensors • and three anchors ◦ in R2. Connecting line-segments
denote known absolute distances. Incomplete EDM corresponding to this dimensionless
EDM graph provides unique isometric reconstruction in R2.
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Figure 138: Given in red # are two discrete linear trajectories of sensors x1 and x2 in
R2 localized by algorithm (1032) as indicated by blue bullets • . Anchors x̌3 , x̌4 , x̌5 ,
corresponding to Figure 137, are indicated by ⊗ . When targets # and bullets • coincide
under these noiseless conditions, localization is successful. On this run, two visible
localization errors are due to rank-3 Gram optimal solutions. These errors can be corrected
by choosing a different normal in objective of minimization.
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where

Φij = (ei − ej)(ei − ej)
T∈ SN

+ (974)

This problem realization is fragile because of the unknown distances between sensors and
anchors. Yet there is no more information we may include beyond the 11 independent
equality constraints on the Gram matrix (nonredundant constraints not antithetical) to
reduce the feasible set.5.17

Exhibited in Figure 138 are two mistakes in solution X⋆(: , 1:2) due to a rank-3
optimal Gram matrix G⋆. The trace objective is a heuristic minimizing convex envelope
of quasiconcave function5.18 rankG . (§2.9.2.9.2, §7.2.2.1) A rank-2 optimal Gram matrix
can be found and the errors corrected by choosing a different normal for the linear objective
function, now implicitly the Identity matrix I ; id est,

tr G = 〈G , I 〉 ← 〈G , δ(u)〉 (1033)

where vector u∈R5 is randomly selected. A random search for a good normal δ(u) in
only a few iterations is quite easy and effective because: the problem is small, an optimal
solution is known a priori to exist in two dimensions, a good normal direction is not
necessarily unique, and (we speculate) because the feasible affine-subset slices the positive
semidefinite cone thinly in the Euclidean sense.5.19 2

We explore ramifications of noise and incomplete data throughout; their individual
effect being to expand the optimal solution set, introducing more solutions and higher-rank
solutions. Hence our focus shifts in §4.4 to discovery of a reliable means for diminishing
the optimal solution set by introduction of a rank constraint.

Now we illustrate how a problem in distance geometry can be solved without equality
constraints representing measured distance; instead, we have only upper and lower bounds
on distances measured:

5.4.2.2.12 Example. Wireless location in a cellular telephone network.
Utilizing measurements of distance, time of flight, angle of arrival, or signal power in
the context of wireless telephony, multilateration is the process of localizing (determining
absolute position of) a radio signal source • by inferring geometry relative to multiple
fixed base stations ◦ whose locations are known.

We consider localization of a cellular telephone by distance geometry, so we assume
distance to any particular base station can be inferred from received signal power. On
a large open flat expanse of terrain, signal-power measurement corresponds well with
inverse distance. But it is not uncommon for measurement of signal power to suffer

5.17By virtue of their dimensioning, the sensors are already constrained to R
2 the affine hull of the anchors.

5.18Projection on that nonconvex subset of all N×N-dimensional positive semidefinite matrices, in an
affine subset, whose rank does not exceed 2 is a problem considered difficult to solve. [372, §4]
5.19The log det rank-heuristic from §7.2.2.4 does not work here because it chooses the wrong normal.
Rank reduction (§4.1.2.1) is unsuccessful here because Barvinok’s upper bound (§2.9.3.0.1) on rank of G⋆

is 4.
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x1

x̌2

x̌3

x̌4

x̌5x̌6

x̌7

Figure 139: Regions of coverage by base stations ◦ in a cellular telephone network. The
term cellular arises from packing of regions best covered by neighboring base stations.
Illustrated is a pentagonal cell best covered by base station x̌2 . Like a Voronoi diagram,
cell geometry depends on base-station arrangement. In some US urban environments, it
is not unusual to find base stations spaced approximately 1 mile apart. There can be as
many as 20 base-station antennae capable of receiving signal from any given cell phone • ;
practically, that number is closer to 6.

Figure 140: Some fitted contours of equal signal power in R2 transmitted from a commercial
cellular telephone • over about 1 mile suburban terrain outside San Francisco in 2005.
(Data by courtesy of Polaris Wireless.)

http://www.polariswireless.com
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20 decibels in loss caused by factors such as multipath interference (signal reflections),
mountainous terrain, man-made structures, turning one’s head, or rolling the windows up
in an automobile. Consequently, contours of equal signal power are no longer circular;
their geometry is irregular and would more aptly be approximated by translated ellipsoids
of graduated orientation and eccentricity as in Figure 140.

Depicted in Figure 139 is one cell phone x1 whose signal power is automatically and
repeatedly measured by 6 base stations ◦ nearby.5.20 Those signal power measurements
are transmitted from that cell phone to base station x̌2 who decides whether to transfer
(hand-off or hand-over) responsibility for that call should the user roam outside its cell.5.21

Due to noise, at least one distance measurement more than the minimum number
of measurements is required for reliable localization in practice; 3 measurements are
minimum in two dimensions, 4 in three.5.22 Existence of noise precludes measured distance
from the input data. We instead assign measured distance to a range estimate specified
by individual upper and lower bounds: di1 is the upper bound on distance-square from
the cell phone to ith base station, while di1 is the lower bound. These bounds become the
input data. Each measurement range is presumed different from the others.

Then convex problem (1024) takes the form:

minimize
G∈S7, X∈R2×7

tr G

subject to di1 ≤ tr(GΦi1) ≤ di1 , i = 2 . . . 7

tr
(

Geie
T
i

)

= ‖x̌i‖2 , i = 2 . . . 7

tr(G(eie
T
j + ej e

T
i )/2) = x̌T

i x̌j , 2≤ i < j = 3 . . . 7

X(: , 2:7) = [ x̌2 x̌3 x̌4 x̌5 x̌6 x̌7 ]
[

I X
XT G

]

º 0 (1034)

where

Φij = (ei − ej)(ei − ej)
T∈ SN

+ (974)

This semidefinite program realizes the wireless location problem illustrated in Figure 139.
Location X⋆(: , 1) is taken as solution, although measurement noise will often cause
rankG⋆ to exceed 2. Randomized search for a rank-2 optimal solution is not so easy
here as in Example 5.4.2.2.11. We introduce a method in §4.4 for enforcing the stronger
rank-constraint (1028). To formulate this same problem in three dimensions, point list X
is simply redimensioned in the semidefinite program. 2

5.20Cell phone signal power is typically encoded logarithmically with 1-decibel increment and 64-decibel
dynamic range.
5.21Because distance to base station is quite difficult to infer from signal power measurements in an urban
environment, localization of a particular cell phone • by distance geometry would be far easier were the
whole cellular system instead conceived so cell phone x1 also transmits (to base station x̌2) its signal
power as received by all other cell phones within range.
5.22In Example 4.4.1.2.4, we explore how this convex optimization algorithm fares in the face of
measurement noise.
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Figure 141: A depiction of molecular conformation. [127]

5.4.2.2.13 Example. (Biswas, Nigam, Ye) Molecular Conformation.
The subatomic measurement technique called nuclear magnetic resonance spectroscopy
(NMR) is employed to ascertain physical conformation of molecules; e.g, Figure 5,
Figure 141. From this technique, distance, angle, and dihedral angle measurements can
be obtained. Dihedral angles arise consequent to a phenomenon where atom subsets are
physically constrained to Euclidean planes.

In the rigid covalent geometry approximation, the bond lengths and angles are
treated as completely fixed, so that a given spatial structure can be described very
compactly indeed by a list of torsion angles alone. . . These are the dihedral
angles between the planes spanned by the two consecutive triples in a chain of
four covalently bonded atoms.

−G. M. Crippen & T. F. Havel, 1988 [92, §1.1]

Crippen & Havel recommend working exclusively with distance data because they consider
angle data to be mathematically cumbersome. The present example shows instead how
inclusion of dihedral angle data into a problem statement can be made elegant and convex.

As before, ascribe position information to the matrix

X = [x1 · · · xN ] ∈ R3×N (76)

and introduce a matrix ℵ holding normals η to planes respecting dihedral angles ϕ :

ℵ , [ η1 · · · ηM ] ∈ R3×M (1035)

As in the other examples, we preferentially work with Gram matrices G because of the
bridge they provide between other variables; we define

http://www.cs.duke.edu/brd/Teaching/Previous/Bio
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[

Gℵ Z
ZT GX

]

,

[

ℵTℵ ℵTX
XTℵ XTX

]

=

[

ℵT

XT

]

[ℵ X ] ∈ RN+M×N+M (1036)

whose rank is 3 by assumption. So our problem’s variables are the two Gram matrices GX

and Gℵ and matrix Z = ℵTX of cross products. Then measurements of distance-square d
can be expressed as linear constraints on GX as in (1034), dihedral angle ϕ measurements
can be expressed as linear constraints on Gℵ by (1004), and normal-vector η conditions
can be expressed by vanishing linear constraints on cross-product matrix Z : Consider
three points x labelled 1 , 2 , 3 assumed to lie in the ℓth plane whose normal is ηℓ . There
might occur, for example, the independent constraints

ηT
ℓ (x1 − x2) = 0

ηT
ℓ (x2 − x3) = 0

(1037)

which are expressible in terms of constant matrices Ak∈RM×N ;

〈Z , Aℓ12〉 = 0
〈Z , Aℓ23〉 = 0

(1038)

Although normals η can be constrained exactly to unit length,

δ(Gℵ) = 1 (1039)

NMR data is noisy; so measurements are given as upper and lower bounds. Given
bounds on dihedral angles respecting 0≤ϕj ≤ π and bounds on distances di and given
constant matrices Ak (1038) and symmetric matrices Φi (974) and Bj per (1004), then
a molecular conformation problem can be expressed:

find
Gℵ∈SM , GX∈SN , Z∈RM×N

GX

subject to di ≤ tr(GX Φi) ≤ di ∀ i∈ I1

cos ϕj ≤ tr(Gℵ Bj) ≤ cos ϕj ∀ j∈ I2

〈Z , Ak〉 = 0 ∀ k∈ I3

GX1 = 0

δ(Gℵ) = 1
[

Gℵ Z
ZT GX

]

º 0

rank

[

Gℵ Z
ZT GX

]

= 3

(1040)

where GX1=0 provides a geometrically centered list X (§5.4.2.2). Ignoring the rank
constraint would tend to force cross-product matrix Z to zero. What binds these three
variables is the rank constraint; we show how to satisfy it in §4.4. 2
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5.4.3 Inner-product form EDM definition

We might, for example, want to realize a constellation given only interstellar
distance (or, equivalently, parsecs from our Sun and relative angular
measurement; the Sun as vertex to two distant stars); called stellar
cartography. . . −p.23

Equivalent to (972) is [419, §1-7] [348, §3.2]

dij = dik + dkj − 2
√

dikdkj cos θikj

=
[√

dik

√

dkj

]

[

1 −eıθikj

−e−ıθikj 1

]

[
√

dik
√

dkj

]

(1041)

called law of cosines where ı ,
√
−1 , i , j , k are positive integers, and θikj is the angle

at vertex xk formed by vectors xi − xk and xj − xk ;

cos θikj =
1
2 (dik + dkj − dij)

√

dikdkj

=
(xi − xk)T(xj − xk)

‖xi − xk‖ ‖xj − xk‖
(1042)

where the numerator forms an inner product of vectors. Distance-square dij

([ √

dik
√

dkj

])

is a convex quadratic function5.23 on R2

+ whereas dij(θikj) is quasiconvex (§3.8)
minimized over domain {−π≤ θikj ≤π} by θ⋆

ikj =0, we get the Pythagorean theorem when
θikj =±π/2, and dij(θikj) is maximized when θ⋆

ikj =±π ;

dij =
(√

dik +
√

dkj

)2
, θikj = ±π

dij = dik + dkj , θikj = ±π
2

dij =
(√

dik −
√

dkj

)2
, θikj = 0

(1043)

so
|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj (1044)

Hence the triangle inequality, Euclidean metric property 4, holds for any EDM D .
We may construct an inner-product form of the EDM definition for matrices by

evaluating (1041) for k=1 : By defining

ΘTΘ ,



















d12

√

d12d13 cos θ213

√

d12d14 cos θ214 · · ·
√

d12d1N cos θ21N
√

d12d13 cos θ213 d13
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d13d14 cos θ314 · · ·
√
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√
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√

d13d14 cos θ314 d14
. . .

√

d14d1N cos θ41N

...
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√

d12d1N cos θ21N

√

d13d1N cos θ31N

√

d14d1N cos θ41N · · · d1N



















∈ SN−1

(1045)

5.23

[

1 −eıθikj

−e−ıθikj 1

]

º 0, having eigenvalues {0, 2}.

Minimum is attained for

[ √

dik
√

dkj

]

=

{

µ1 , µ ≥ 0 , θikj = 0
0 , −π ≤ θikj ≤ π , θikj 6= 0

(§D.2.1, [63, exmp.4.5]).
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then any EDM may be expressed

D(Θ) ,

[

0
δ(ΘTΘ)

]

1T + 1
[

0 δ(ΘTΘ)T
]

− 2

[

0 0T

0 ΘTΘ

]

∈ EDMN

=

[

0 δ(ΘTΘ)T

δ(ΘTΘ) δ(ΘTΘ)1T+ 1δ(ΘTΘ)T− 2ΘTΘ

] (1046)

EDMN =
{

D(Θ) | Θ ∈ RN−1×N−1
}

(1047)

for which all Euclidean metric properties hold. Entries of ΘTΘ result from vector
inner-products as in (1042); id est,

Θ = [x2 − x1 x3 − x1 · · · xN − x1 ] = X
√

2VN ∈ Rn×N−1 (1048)

Inner product ΘTΘ is obviously related to a Gram matrix (985),

G =

[

0 0T

0 ΘTΘ

]

, x1 = 0 (1049)

For D = D(Θ) and no condition on the list X (confer (993) (997))

ΘTΘ = −V T
NDVN ∈ RN−1×N−1 (1050)

5.4.3.1 Relative-angle form

The inner-product form EDM definition is not a unique definition of Euclidean distance
matrix; there are approximately five flavors distinguished by their argument to operator
D . Here is another one:

Like D(X) (976), D(Θ) will make an EDM given any Θ∈Rn×N−1, it is neither a
convex function of Θ (§5.4.3.2), and it is homogeneous in the sense (979). Scrutinizing
ΘTΘ (1045) we find that because of the arbitrary choice k = 1, distances therein are all
with respect to point x1 . Similarly, relative angles in ΘTΘ are between all vector pairs
having vertex x1 . Yet picking arbitrary θi1j to fill ΘTΘ will not necessarily make an
EDM; inner product (1045) must be positive semidefinite.

ΘTΘ =
√

δ(d) Ω
√

δ(d) ,


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




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






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


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0
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d1N


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







(1051)

Expression D(Θ) defines an EDM for any positive semidefinite relative-angle matrix

Ω = [cos θi1j , i, j = 2 . . . N ] ∈ SN−1 (1052)
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and any nonnegative distance vector

d = [d1j , j = 2 . . . N ] = δ(ΘTΘ) ∈ RN−1 (1053)

because (§A.3.1.0.5)
Ω º 0 ⇒ ΘTΘ º 0 (1054)

Decomposition (1051) and the relative-angle matrix inequality Ωº 0 lead to a different
expression of an inner-product form EDM definition (1046)

D(Ω , d) ,

[

0
d

]

1T + 1
[

0 dT
]

− 2

√

δ

([

0
d

])[

0 0T

0 Ω

]

√

δ

([

0
d

])

=

[

0 dT

d d1T+ 1dT− 2
√

δ(d) Ω
√

δ(d)

]

∈ EDMN

(1055)

and another expression of the EDM cone:

EDMN =
{

D(Ω , d) | Ω º 0 ,
√

δ(d) º 0
}

(1056)

In the particular circumstance x1 = 0, we can relate interpoint angle matrix Ψ from the
Gram decomposition in (985) to relative-angle matrix Ω in (1051). Thus,

Ψ ≡
[

1 0T

0 Ω

]

, x1 = 0 (1057)

5.4.3.2 Inner-product form −V T
N D(Θ)VN convexity

On page 387 we saw that each EDM entry dij is a convex quadratic function of

[ √

dik
√

dkj

]

and a quasiconvex function of θikj . Here the situation for inner-product form EDM
operator D(Θ) (1046) is identical to that in §5.4.1 for list-form D(X) ; −D(Θ) is not a
quasiconvex function of Θ by the same reasoning, and from (1050)

−V T
N D(Θ)VN = ΘTΘ (1058)

is a convex quadratic function of Θ on domain Rn×N−1 achieving its minimum at Θ = 0.

5.4.3.3 Inner-product form, discussion

We deduce that knowledge of interpoint distance is equivalent to knowledge of distance
and angle from the perspective of one point, x1 in our chosen case. The total amount of
information N(N−1)/2 in ΘTΘ is unchanged5.24 with respect to EDM D .

5.24The reason for amount O(N 2) information is because of the relative measurements. Use of a fixed
reference in measurement of angles and distances would reduce required information but is antithetical.
In the particular case n = 2, for example, ordering all points xℓ (in a length-N list) by increasing angle

of vector xℓ − x1 with respect to x2 − x1 , θi1j becomes equivalent to
∑j−1

k=i θk,1,k+1 ≤ 2π and the
amount of information is reduced to 2N−3 ; rather, O(N ).
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5.5 Invariance

When D is an EDM, there exist an infinite number of corresponding N -point lists X
(76) in Euclidean space. All those lists are related by isometric transformation: rotation,
reflection, and translation (offset or shift).

5.5.1 Translation

Any translation common among all the points xℓ in a list will be cancelled in the formation
of each dij . Proof follows directly from (972). Knowing that translation α in advance,
we may remove it from the list constituting the columns of X by subtracting α1T. Then
it stands to reason by list-form definition (976) of an EDM, for any translation α∈Rn

D(X − α1T) = D(X) (1059)

In words, interpoint distances are unaffected by offset; EDM D is translation invariant.
When α = x1 in particular,

[x2−x1 x3−x1 · · · xN −x1 ] = X
√

2VN ∈ Rn×N−1 (1048)

and so

D(X − x11
T) = D(X − Xe11

T) = D
(

X
[

0
√

2VN
])

= D(X) (1060)

5.5.1.0.1 Example. Translating geometric center to origin.
We might choose to shift the geometric center αc of an N -point list {xℓ} (arranged
columnar in X) to the origin; [371] [179]

α = αc , Xbc , X1 1
N ∈ P ⊆ A (1061)

where A represents the list’s affine hull. If we were to associate a point-mass mℓ

with each of the points xℓ in the list, then their center of mass (or gravity) would be
(
∑

xℓ mℓ) /
∑

mℓ . The geometric center is the same as the center of mass under the
assumption of uniform mass density across points. [235] The geometric center always
lies in the convex hull P of the list; id est, αc∈ P because bT

c 1=1 and bcº 0 .5.25

Subtracting the geometric center from every list member,

X − αc1
T = X − 1

N X11T = X(I − 1
N 11T) = XV ∈ Rn×N (1062)

where V is the geometric centering matrix (998). So we have (confer (976))

D(X) = D(XV ) = δ(V TXTXV )1T+ 1δ(V TXTXV )T− 2V TXTXV ∈ EDMN (1063)

2

5.25Any b from α = Xb chosen such that bT1 = 1, more generally, makes an auxiliary V -matrix. (§B.4.5)
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5.5.1.1 Gram-form invariance

Following from (1063) and the linear Gram-form EDM operator (988):

D(G) = D(V GV ) = δ(V GV )1T+ 1δ(V GV )T− 2V GV ∈ EDMN (1064)

The Gram-form consequently exhibits invariance to translation by a doublet u1T+ 1uT

(§B.2)
D(G) = D(G − (u1T+ 1uT)) (1065)

because, for any u∈RN , D(u1T+ 1uT)=0. The collection of all such doublets forms
the nullspace (1081) to the operator; the translation-invariant subspace SN⊥

c (2115) of
the symmetric matrices SN . This means matrix G is not unique and can belong to an
expanse more broad than a positive semidefinite cone; id est, G∈ SN

+ − SN⊥
c . So explains

Gram matrix sufficiency in EDM definition (988).5.26

5.5.2 Rotation/Reflection

Rotation of the list X∈ Rn×N about some arbitrary point α∈Rn, or reflection through
some affine subset containing α , can be accomplished via Q(X−α1T) where Q is an
orthogonal matrix (§B.5).

We rightfully expect

D
(

Q(X − α1T)
)

= D(QX − β1T) = D(QX) = D(X) (1066)

Because list-form D(X) is translation invariant, we may safely ignore offset and consider
only the impact of matrices that premultiply X . Interpoint distances are unaffected by
rotation or reflection; we say, EDM D is rotation/reflection invariant. Proof follows from
the fact, QT=Q−1 ⇒ XTQTQX =XTX . So (1066) follows directly from (976).

The class of premultiplying matrices for which interpoint distances are unaffected is a
little more broad than orthogonal matrices. Looking at EDM definition (976), it appears
that any matrix Qp such that

XTQT
pQp X = XTX (1067)

will have the property
D(Qp X) = D(X) (1068)

An example is skinny Qp∈Rm×n (m>n) having orthonormal columns; an orthonormal
matrix.

5.5.2.0.1 Example. Reflection prevention and quadrature rotation.
Consider the EDM graph in Figure 142b representing known distance between vertices
(Figure 142a) of a tilted-square diamond in R2. Suppose some geometrical optimization
problem were posed where isometric transformation is allowed excepting reflection, and
where rotation must be quantized so that only quadrature rotations are allowed; only
multiples of π/2.

5.26A constraint G1=0 would prevent excursion into the translation-invariant subspace (numerical
unboundedness).
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x1 x1

x2 x2

x3 x3

x4 x4

(a) (b) (c)

Figure 142: (a) Four points in quadrature in two dimensions about their geometric center.
(b) Complete EDM graph of diamond-shaped vertices. (c) Quadrature rotation of
Euclidean body in R2 first requires shroud: the smallest Cartesian square containing it.

In two dimensions, a counterclockwise rotation of any vector about the origin by angle
θ is prescribed by the orthogonal matrix

Q =

[

cos θ − sin θ
sin θ cos θ

]

(1069)

whereas reflection of any point through a hyperplane containing the origin

∂H =

{

x∈R2

∣

∣

∣

∣

∣

[

cos θ
sin θ

]T

x = 0

}

(1070)

is accomplished via multiplication with symmetric orthogonal matrix (§B.5.3)

R =

[

sin(θ)2− cos(θ)2 −2 sin(θ) cos(θ)
−2 sin(θ) cos(θ) cos(θ)2− sin(θ)2

]

(1071)

Rotation matrix Q is characterized by identical diagonal entries and by antidiagonal entries
equal but opposite in sign, whereas reflection matrix R is characterized in the reverse sense.

Assign the diamond vertices
{

xℓ ∈ R2, ℓ=1 . . . 4
}

to columns of a matrix

X = [x1 x2 x3 x4 ] ∈ R2×4 (76)

Our scheme to prevent reflection enforces a rotation matrix characteristic upon the
coordinates of adjacent points themselves: First shift the geometric center of X to the
origin; for geometric centering matrix V ∈ S4 (§5.5.1.0.1), define

Y , XV ∈ R2×4 (1072)

To maintain relative quadrature between points (Figure 142a) and to prevent reflection,
it is sufficient that all interpoint distances be specified and that adjacencies Y (: , 1: 2) ,
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Y (: , 2:3) , and Y (: , 3:4) be proportional to 2×2 rotation matrices; any clockwise rotation
would ascribe a reflection matrix characteristic. Counterclockwise rotation is thereby
enforced by constraining equality among diagonal and antidiagonal entries as prescribed
by (1069);

Y (: , 1: 3) =

[

0 1
−1 0

]

Y (: , 2:4) (1073)

Quadrature quantization of rotation can be regarded as a constraint on tilt of the
smallest Cartesian square containing the diamond as in Figure 142c. Our scheme to
quantize rotation requires that all square vertices be described by vectors whose entries are
nonnegative when the square is translated anywhere interior to the nonnegative orthant.
We capture the four square vertices as columns of a product Y C where

C =









1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1









(1074)

Then, assuming a unit-square shroud, the affine constraint

Y C +

[

1/2
1/2

]

1T≥ 0 (1075)

quantizes rotation, as desired. 2

5.5.2.1 Inner-product form invariance

Likewise, D(Θ) (1046) is rotation/reflection invariant;

D(QpΘ) = D(QΘ) = D(Θ) (1076)

so (1067) and (1068) similarly apply.

5.5.3 Invariance conclusion

In the making of an EDM, absolute rotation, reflection, and translation information is lost.
Given an EDM, reconstruction of point position (§5.12, the list X) can be guaranteed
correct only in affine dimension r and relative position. Given a noiseless complete EDM,
this isometric reconstruction is unique insofar as every realization of a corresponding list
X is congruent :

5.6 Injectivity of D & unique reconstruction

Injectivity implies uniqueness of isometric reconstruction (§5.4.2.2.10); hence, we endeavor
to demonstrate it.
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basis SN⊥
c

∈basis SN⊥
h

∈basis SN⊥
h

SN
c

SN
h

dim SN
c = dim SN

h = N(N−1)
2 in RN(N+1)/2

dim SN⊥
c = dim SN⊥

h = N in RN(N+1)/2

basis SN
c = V {Eij}V (confer (59))

Figure 143: Orthogonal complements in SN abstractly oriented in isometrically isomorphic
RN(N+1)/2. Case N = 2 accurately illustrated in R3. Orthogonal projection of basis for
SN⊥

h on SN⊥
c yields another basis for SN⊥

c . (Basis vectors for SN⊥
c are illustrated lying in

a plane orthogonal to SN
c in this dimension. Basis vectors for each ⊥ space outnumber

those for its respective orthogonal complement; such is not the case in higher dimension.)

EDM operators list-form D(X) (976), Gram-form D(G) (988), and inner-product form
D(Θ) (1046) are many-to-one surjections (§5.5) onto the same range; the EDM cone (§6):
(confer (989) (1083))

EDMN =
{

D(X) : RN−1×N → SN
h | X∈ RN−1×N

}

=
{

D(G) : SN → SN
h | G ∈ SN

+ − SN⊥
c

}

=
{

D(Θ) : RN−1×N−1 → SN
h | Θ ∈ RN−1×N−1

}

(1077)

where (§5.5.1.1)

SN⊥
c = {u1T+ 1uT | u∈RN} ⊆ SN (2115)
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5.6.1 Gram-form bijectivity

Because linear Gram-form EDM operator

D(G) = δ(G)1T+ 1δ(G)T− 2G (988)

has no nullspace [89, §A.1] on the geometric center subspace5.27 (§E.7.2.0.2)

SN
c , {G∈ SN | G1 = 0} (2113)

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN (2114)

≡ {VNAV T
N | A∈ SN−1}

(1078)

then D(G) on that subspace is injective.

To prove injectivity of D(G) on SN
c : Any matrix Y ∈ SN can be decomposed

into orthogonal components in SN ;

Y = V Y V + (Y − V Y V ) (1079)

where V Y V ∈ SN
c and Y −V Y V ∈ SN⊥

c (2115). Because of translation
invariance (§5.5.1.1) and linearity, D(Y −V Y V )=0 hence N (D)⊇ SN⊥

c . It
remains only to show

D(V Y V ) = 0 ⇔ V Y V = 0 (1080)

( ⇔ Y = u1T+ 1uT for some u∈RN). D(V Y V ) will vanish whenever
2V Y V = δ(V Y V )1T+ 1δ(V Y V )T. But this implies R(1) (§B.2) were a subset
of R(V Y V ) , which is contradictory. Thus we have

N (D) = {Y | D(Y )=0} = {Y | V Y V = 0} = SN⊥
c (1081)

¨

Since G1=0 ⇔ X1=0 (996) simply means list X is geometrically centered at the
origin, and because the Gram-form EDM operator D is translation invariant and N (D)
is the translation-invariant subspace SN⊥

c , then EDM definition D(G) (1077) on5.28

(confer §6.5.1, §6.6.1, §A.7.4.0.1)

SN
c ∩ SN

+ = {V Y V º 0 | Y ∈ SN} ≡ {VNAV T
N | A∈ SN−1

+ } ⊂ SN (1082)

must be surjective onto EDMN ; (confer (989))

EDMN =
{

D(G) | G ∈ SN
c ∩ SN

+

}

(1083)

5.27Equivalence ≡ in (1078) follows from the fact: Given B = V Y V = VNAV T
N ∈ S

N
c with only matrix

A∈ S
N−1 unknown, then V †

NBV †T
N = A or V †

N Y V †T
N = A .

5.28Equivalence ≡ in (1082) follows from the fact: Given B = V Y V = VNAV T
N ∈ S

N
+ with only matrix

A unknown, then V †
NBV †T

N = A and A∈ S
N−1
+ must be positive semidefinite by positive semidefiniteness

of B and Corollary A.3.1.0.5.
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5.6.1.1 Gram-form operator D inversion

Define the linear geometric centering operator V ; (confer (997))

V(D) : SN → SN , −V D V 1
2 (1084)

[93, §4.3]5.29 This orthogonal projector V has no nullspace on

SN
h = aff EDMN (1338)

because the projection of −D/2 on SN
c (2113) can be 0 if and only if D ∈ SN⊥

c ; but
SN⊥

c ∩ SN
h = 0 (Figure 143). Projector V on SN

h is therefore injective hence uniquely
invertible. Further, −V SN

h V/2 is equivalent to the geometric center subspace SN
c in the

ambient space of symmetric matrices; a surjection,

SN
c = V(SN ) = V

(

SN
h ⊕ SN⊥

h

)

= V
(

SN
h

)

(1085)

because (72)

V
(

SN
h

)

⊇ V
(

SN⊥
h

)

= V
(

δ2(SN )
)

(1086)

Because D(G) on SN
c is injective, and aff D

(

V(EDMN )
)

= D
(

V(aff EDMN )
)

by property

(127) of the affine hull, we find for D∈ SN
h

D(−V D V 1
2 ) = δ(−V D V 1

2 )1T + 1δ(−V D V 1
2 )T − 2(−V D V 1

2 ) (1087)

id est,

D = D
(

V(D)
)

(1088)

−V D V = V
(

D(−V D V )
)

(1089)

or
SN

h = D
(

V(SN
h )

)

(1090)

−V SN
h V = V

(

D(−V SN
h V )

)

(1091)

These operators V and D are mutual inverses.

The Gram-form D
(

SN
c

)

(988) is equivalent to SN
h ;

D
(

SN
c

)

= D
(

V(SN
h ⊕ SN⊥

h )
)

= SN
h + D

(

V(SN⊥
h )

)

= SN
h (1092)

because SN
h ⊇ D

(

V(SN⊥
h )

)

. In summary, for the Gram-form we have the isomorphisms

[94, §2] [93, p.76, p.107] [8, §2.1]5.30 [7, §2] [9, §18.2.1] [3, §2.1]

SN
h = D(SN

c ) (1093)

SN
c = V(SN

h ) (1094)

5.29Critchley cites Torgerson, 1958 [368, ch.11, §2], for a history and derivation of (1084).
5.30In [8, p.6, line 20], delete sentence: Since G is also . . . not a singleton set.
[8, p.10, line 11] x3 = 2 (not 1).
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and from bijectivity results in §5.6.1,

EDMN = D(SN
c ∩ SN

+ ) (1095)

SN
c ∩ SN

+ = V(EDMN ) (1096)

5.6.2 Inner-product form bijectivity

The Gram-form EDM operator D(G)= δ(G)1T+ 1δ(G)T− 2G (988) is an injective map,
for example, on the domain that is the subspace of symmetric matrices having all zeros in
the first row and column

SN
1 = {G∈ SN | Ge1 = 0}

=

{[

0 0T

0 I

]

Y

[

0 0T

0 I

]

| Y ∈ SN

}

(2117)

because it obviously has no nullspace there. Since Ge1 = 0 ⇔ Xe1 = 0 (990) means the
first point in the list X resides at the origin, then D(G) on SN

1 ∩ SN
+ must be surjective

onto EDMN .
Substituting ΘTΘ ← −V T

NDVN (1058) into inner-product form EDM definition D(Θ)
(1046), it may be further decomposed:

D(D) =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1097)

This linear operator D is another flavor of inner-product form and an injective map
of the EDM cone onto itself. Yet when its domain is instead the entire symmetric
hollow subspace SN

h = aff EDMN , D(D) becomes an injective map onto that same
subspace. Proof follows directly from the fact: linear D has no nullspace [89, §A.1] on
SN

h = aff D(EDMN )= D(aff EDMN ) (127).

5.6.2.1 Inversion of D
(

−V T
NDVN

)

Injectivity of D(D) suggests inversion of (confer (993))

VN (D) : SN → SN−1 , −V T
NDVN (1098)

a linear surjective5.31 mapping onto SN−1 having nullspace5.32 SN⊥
c ;

VN (SN
h ) = SN−1 (1099)

5.31Surjectivity of VN (D) is demonstrated via the Gram-form EDM operator D(G) : Since S
N
h = D(SN

c )

(1092), then for any Y ∈ S
N−1, −V T

N D(V †T
N Y V †

N /2)VN = Y .
5.32 N (VN ) ⊇ S

N⊥
c is apparent. There exists a linear mapping

T (VN (D)) , V †T
N VN (D)V †

N = −V DV 1
2

= V(D)

such that
N (T (VN )) = N (V) ⊇ N (VN ) ⊇ S

N⊥
c = N (V)

where the equality S
N⊥
c =N (V) is known (§E.7.2.0.2). ¨
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injective on domain SN
h because SN⊥

c ∩ SN
h = 0. Revising the argument of this

inner-product form (1097), we get another flavor

D
(

−V T
NDVN

)

=

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1100)
and we obtain mutual inversion of operators VN and D , for D∈ SN

h

D = D
(

VN (D)
)

(1101)

−V T
NDVN = VN

(

D(−V T
NDVN )

)

(1102)

or
SN

h = D
(

VN (SN
h )

)

(1103)

−V T
N SN

h VN = VN
(

D(−V T
N SN

h VN )
)

(1104)

Substituting ΘTΘ←Φ into inner-product form EDM definition (1046), any EDM may
be expressed by the new flavor

D(Φ) ,

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ º 0

(1105)

where this D is a linear surjective operator onto EDMN by definition, injective because it
has no nullspace on domain SN−1

+ . More broadly, aff D(SN−1
+ )= D(aff SN−1

+ ) (127),

SN
h = D(SN−1)

SN−1 = VN (SN
h )

(1106)

demonstrably isomorphisms, and by bijectivity of this inner-product form:

EDMN = D(SN−1
+ ) (1107)

SN−1
+ = VN (EDMN ) (1108)

5.7 Embedding in affine hull

The affine hull A (78) of a point list {xℓ} (arranged columnar in X∈ Rn×N (76)) is
identical to the affine hull of that polyhedron P (86) formed from all convex combinations
of the xℓ ; [63, §2] [325, §17]

A = aff X = aff P (1109)

Comparing hull definitions (78) and (86), it becomes obvious that the xℓ and their convex
hull P are embedded in their unique affine hull A ;

A ⊇ P ⊇ {xℓ} (1110)
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Recall: affine dimension r is a lower bound on embedding, equal to dimension of the
subspace parallel to that nonempty affine set A in which the points are embedded. (§2.3.1)
We define dimension of the convex hull P to be the same as dimension r of the affine hull
A [325, §2], but r is not necessarily equal to rank of X (1129).

For the particular example illustrated in Figure 129, P is the triangle in union with
its relative interior while its three vertices constitute the entire list X . Affine hull A is
the unique plane that contains the triangle, so affine dimension r = 2 in that example
while rank of X is 3. Were there only two points in Figure 129, then the affine hull would
instead be the unique line passing through them; r would become 1 while rank would then
be 2.

5.7.1 Determining affine dimension

Knowledge of affine dimension r becomes important because we lose any absolute offset
common to all the generating xℓ in Rn when reconstructing convex polyhedra given only
distance information. (§5.5.1) To calculate r , we first remove any offset that serves to
increase dimensionality of the subspace required to contain polyhedron P ; subtracting
any α∈A in the affine hull from every list member will work,

X − α1T (1111)

translating A to the origin:5.33

A− α = aff(X − α1T) = aff(X) − α (1112)

P − α = conv(X − α1T) = conv(X) − α (1113)

Because (1109) and (1110) translate,

Rn ⊇ A− α = aff(X − α1T) = aff(P − α) ⊇ P − α ⊇ {xℓ − α} (1114)

where from the previous relations it is easily shown

aff(P − α) = aff(P) − α (1115)

Translating A neither changes its dimension or the dimension of the embedded polyhedron
P ; (77)

r , dimA = dim(A− α) , dim(P − α) = dimP (1116)

For any α∈ Rn, (1112)-(1116) remain true. [325, p.4, p.12] Yet when α ∈ A , the affine
set A− α becomes a unique subspace of Rn in which the {xℓ − α} and their convex hull
P − α are embedded (1114), and whose dimension is more easily calculated.

5.7.1.0.1 Example. Translating first list-member to origin.
Subtracting the first member α , x1 from every list member will translate their affine hull
A and their convex hull P and, in particular, x1∈ P ⊆ A to the origin in Rn ; videlicet,

X − x11
T = X − Xe11

T = X(I − e11
T) = X

[

0
√

2VN
]

∈ Rn×N (1117)

5.33The manipulation of hull functions aff and conv follows from their definitions.
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where VN is defined in (982), and e1 in (992). Applying (1114) to (1117),

Rn ⊇ R(XVN ) = A− x1 = aff(X − x11
T) = aff(P − x1) ⊇ P − x1 ∋ 0 (1118)

where XVN ∈ Rn×N−1. Hence

r = dimR(XVN ) (1119)

2

Since shifting the geometric center to the origin (§5.5.1.0.1) translates the affine hull
to the origin as well, then it must also be true

r = dimR(XV ) (1120)

For any matrix whose range is R(V )=N (1T) we get the same result; e.g,

r = dimR(XV †T
N ) (1121)

because
R(XV ) = {Xz | z∈N (1T)} (1122)

and R(V ) = R(VN ) = R(V †T
N ) (§E). These auxiliary matrices (§B.4.2) are more closely

related;
V = VNV †

N (1747)

5.7.1.1 Affine dimension r versus rank

Now, suppose D is an EDM as defined by

D(X) = δ(XTX)1T+ 1δ(XTX)T− 2XTX ∈ EDMN (976)

and we premultiply by −V T
N and postmultiply by VN . Then because V T

N 1=0 (983), it
is always true that

−V T
NDVN = 2V T

NXTXVN = 2V T
N GVN ∈ SN−1 (1123)

where G is a Gram matrix. Similarly pre- and postmultiplying by V (confer (997))

−V D V = 2V XTX V = 2V GV ∈ SN (1124)

always holds because V 1=0 (1737). Likewise, multiplying inner-product form EDM
definition (1046), it always holds:

−V T
NDVN = ΘTΘ ∈ SN−1 (1050)

For any matrix A , rankATA = rankA = rankAT. [218, §0.4]5.34 So, by (1122), affine
dimension

r = rankXV = rankXVN = rankXV †T
N = rankΘ

= rankV D V = rankV GV = rankV T
NDVN = rankV T

N GVN
(1125)

5.34For A∈R
m×n, N (ATA) = N (A). [348, §3.3]



5.7. EMBEDDING IN AFFINE HULL 401

By conservation of dimension, (§A.7.3.0.1)

r + dimN (V T
NDVN ) = N−1 (1126)

r + dimN (V D V ) = N (1127)

For D∈EDMN

−V T
NDVN ≻ 0 ⇔ r = N−1 (1128)

but −V D V ⊁ 0. The general fact5.35 (confer (1008))

r ≤ min{n , N−1} (1129)

is evident from (1117) but can be visualized in the example illustrated in Figure 129.
There we imagine a vector from the origin to each point in the list. Those three vectors
are linearly independent in R3, but affine dimension r is 2 because the three points lie
in a plane. When that plane is translated to the origin, it becomes the only subspace of
dimension r=2 that can contain the translated triangular polyhedron.

5.7.2 Précis

We collect expressions for affine dimension r : for list X∈ Rn×N and Gram matrix G∈ SN
+

r , dim(P − α) = dimP = dim conv X
= dim(A− α) = dimA = dim aff X
= rank(X − x11

T) = rank(X − αc1
T)

= rank Θ (1048)

= rankXVN = rankXV = rankXV †T
N

= rankX , Xe1 = 0 or X1=0

= rankV T
N GVN = rankV GV = rankV †

NGVN
= rankG , Ge1 = 0 (993) or G1=0 (997)

= rankV T
NDVN = rankV D V = rankV †

NDVN = rankVN (V T
NDVN )V T

N
= rank Λ (1216)

= N−1 − dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (1137)















D ∈ EDMN

(1130)

5.7.3 Eigenvalues of −V DV versus −V
†
NDVN

Suppose for D∈EDMN we are given eigenvectors vi∈RN of −V D V and corresponding
eigenvalues λ∈RN so that

−V D V vi = λi vi , i = 1 . . . N (1131)

From these we can determine the eigenvectors and eigenvalues of −V †
NDVN : Define

νi , V †
N vi , λi 6= 0 (1132)

5.35 rank X ≤ min{n , N}
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Then we have:

−V DVNV †
N vi = λi vi (1133)

−V †
NV DVN νi = λiV

†
N vi (1134)

−V †
NDVN νi = λi νi (1135)

the eigenvectors of −V †
NDVN are given by (1132) while its corresponding nonzero

eigenvalues are identical to those of −V D V although −V †
NDVN is not necessarily positive

semidefinite. In contrast, −V T
NDVN is positive semidefinite but its nonzero eigenvalues

are generally different.

5.7.3.0.1 Theorem. EDM rank versus affine dimension r . [179, §3] [200, §3]
[178, §3] For D∈EDMN (confer (1290))

1. r = rank(D) − 1 ⇔ 1TD†1 6= 0
Points constituting a list X generating the polyhedron corresponding to D lie on the
relative boundary of an r-dimensional circumhypersphere having

diameter =
√

2
(

1TD†1
)−1/2

circumcenter = XD†
1

1TD†1

(1136)

2. r = rank(D) − 2 ⇔ 1TD†1 = 0
There can be no circumhypersphere whose relative boundary contains a generating
list for the corresponding polyhedron.

3. In Cayley-Menger form [120, §6.2] [92, §3.3] [52, §40] (§5.11.2),

r = N−1 − dimN
([

0 1T

1 −D

])

= rank

[

0 1T

1 −D

]

− 2 (1137)

Circumhyperspheres exist for r< rank(D)−2. [365, §7] ⋄

For all practical purposes, (1129)

max{0 , rank(D)− 2} ≤ r ≤ min{n , N−1} (1138)

5.8 Euclidean metric versus matrix criteria

5.8.1 Nonnegativity property 1

When D=[dij ] is an EDM (976), then it is apparent from (1123)

2V T
NXTXVN = −V T

NDVN º 0 (1139)
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because for any matrix A , ATAº0 .5.36 We claim nonnegativity of the dij is enforced
primarily by the matrix inequality (1139); id est,

−V T
NDVN º 0

D ∈ SN
h

}

⇒ dij ≥ 0 , i 6= j (1140)

(The matrix inequality to enforce strict positivity differs by a stroke of the pen. (1143))

We now support our claim: If any matrix A∈Rm×m is positive semidefinite,
then its main diagonal δ(A)∈Rm must have all nonnegative entries. [174, §4.2]
Given D∈ SN

h

−V T
NDVN =



















d12
1
2 (d12+d13−d23)

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d12+d1N−d2N )
1
2 (d12+d13−d23) d13

1
2 (d1,i+1+d1,j+1−di+1,j+1) · · · 1

2 (d13+d1N−d3N )

1
2 (d1,j+1+d1,i+1−dj+1,i+1)

1
2 (d1,j+1+d1,i+1−dj+1,i+1) d1,i+1

. . . 1
2 (d14+d1N−d4N )

...
...

. . .
. . .

...
1
2 (d12+d1N−d2N ) 1

2 (d13+d1N−d3N ) 1
2 (d14+d1N−d4N ) · · · d1N



















= 1
2 (1D1,2:N + D2:N,11

T− D2:N,2:N ) ∈ SN−1 (1141)

where row,column indices i,j∈{1 . . . N−1}. [330] It follows:

−V T
NDVN º 0

D ∈ SN
h

}

⇒ δ(−V T
NDVN ) =











d12

d13

...
d1N











º 0 (1142)

Multiplication of VN by any permutation matrix Ξ has null effect on its range
and nullspace. In other words, any permutation of the rows or columns of VN
produces a basis for N (1T); id est, R(ΞrVN )= R(VN Ξc)= R(VN )= N (1T).
Hence, −V T

NDVN º 0 ⇔ −V T
N ΞT

rDΞrVN º 0 (⇔ −ΞT
c V T

NDVN Ξc º 0).
Various permutation matrices5.37 will sift the remaining dij similarly to (1142)
thereby proving their nonnegativity. Hence −V T

NDVN º 0 is a sufficient test
for the first property (§5.2) of the Euclidean metric, nonnegativity. ¨

When affine dimension r equals 1, in particular, nonnegativity symmetry and
hollowness become necessary and sufficient criteria satisfying matrix inequality (1139).
(§6.5.0.0.1)

5.36For A∈R
m×n, ATA º 0 ⇔ yTATAy = ‖Ay‖2 ≥ 0 for all ‖y‖ = 1. When A is full-rank

skinny-or-square, ATA ≻ 0.
5.37The rule of thumb is: If Ξr(i , 1) = 1, then δ(−V T

N ΞT
rDΞrVN )∈R

N−1 is some permutation of the ith

row or column of D excepting the 0 entry from the main diagonal.
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5.8.1.1 Strict positivity

Should we require the points in Rn to be distinct, then entries of D off the main diagonal
must be strictly positive {dij > 0, i 6= j} and only those entries along the main diagonal
of D are 0. By similar argument, the strict matrix inequality is a sufficient test for strict
positivity of Euclidean distance-square;

−V T
NDVN ≻ 0

D ∈ SN
h

}

⇒ dij > 0 , i 6= j (1143)

5.8.2 Triangle inequality property 4

In light of Kreyszig’s observation [243, §1.1 prob.15] that properties 2 through 4 of the
Euclidean metric (§5.2) together imply nonnegativity property 1,

2
√

djk =
√

djk +
√

dkj ≥
√

djj = 0 , j 6=k (1144)

nonnegativity criterion (1140) suggests that matrix inequality −V T
NDVN º 0 might

somehow take on the role of triangle inequality; id est,

δ(D) = 0
DT = D

−V T
NDVN º 0







⇒
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k (1145)

We now show that is indeed the case: Let T be the leading principal submatrix in S2 of
−V T

NDVN (upper left 2×2 submatrix from (1141));

T ,

[

d12
1
2 (d12+d13−d23)

1
2 (d12+d13−d23) d13

]

(1146)

Submatrix T must be positive (semi)definite whenever −V T
NDVN is. (§A.3.1.0.4, §5.8.3)

Now we have,
−V T

NDVN º 0 ⇒ T º 0 ⇔ λ1 ≥ λ2 ≥ 0

−V T
NDVN ≻ 0 ⇒ T ≻ 0 ⇔ λ1 ≥ λ2 > 0

(1147)

where λ1 and λ2 are the eigenvalues of T , real due only to symmetry of T :

λ1 = 1
2

(

d12 + d13 +
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)

)

∈ R

λ2 = 1
2

(

d12 + d13 −
√

d 2
23 − 2(d12 + d13)d23 + 2(d 2

12 + d 2
13)

)

∈ R
(1148)

Nonnegativity of eigenvalue λ1 is guaranteed by only nonnegativity of the dij which in
turn is guaranteed by matrix inequality (1140). Inequality between the eigenvalues in
(1147) follows from only realness of the dij . Since λ1 always equals or exceeds λ2 ,
conditions for positive (semi)definiteness of submatrix T can be completely determined
by examining λ2 the smaller of its two eigenvalues. A triangle inequality is made apparent
when we express T eigenvalue nonnegativity in terms of D matrix entries; videlicet,

T º 0 ⇔ det T = λ1λ2 ≥ 0 , d12 , d13 ≥ 0 (c)
⇔

λ2 ≥ 0 (b)
⇔

|
√

d12 −
√

d23 | ≤
√

d13 ≤
√

d12 +
√

d23 (a)

(1149)
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Triangle inequality (1149a) (confer (1044) (1161)), in terms of three rooted entries from
D , is equivalent to metric property 4

√

d13 ≤
√

d12 +
√

d23
√

d23 ≤
√

d12 +
√

d13
√

d12 ≤
√

d13 +
√

d23

(1150)

for the corresponding points x1 , x2 , x3 from some length-N list.5.38

5.8.2.1 Comment

Given D whose dimension N equals or exceeds 3, there are N !/(3!(N− 3)!) distinct triangle
inequalities in total like (1044) that must be satisfied, of which each dij is involved in
N−2, and each point xi is in (N−1)!/(2!(N−1 − 2)!). We have so far revealed only one
of those triangle inequalities; namely, (1149a) that came from T (1146). Yet we claim if
−V T

NDVN º 0 then all triangle inequalities will be satisfied simultaneously;

|
√

dik −
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj , i<k<j (1151)

(There are no more.) To verify our claim, we must prove the matrix inequality
−V T

NDVN º 0 to be a sufficient test of all the triangle inequalities; more efficient, we
mention, for larger N :

5.8.2.1.1 Shore. The columns of ΞrVN Ξc hold a basis for N (1T) when Ξr and Ξc

are permutation matrices. In other words, any permutation of the rows or columns
of VN leaves its range and nullspace unchanged; id est, R(ΞrVN Ξc)=R(VN )=N (1T)
(983). Hence, two distinct matrix inequalities can be equivalent tests of the positive
semidefiniteness of D on R(VN ) ; id est, −V T

NDVN º 0 ⇔ −(ΞrVN Ξc)
TD(ΞrVN Ξc)º 0.

By properly choosing permutation matrices,5.39 the leading principal submatrix TΞ∈ S2 of
−(ΞrVN Ξc)

TD(ΞrVN Ξc) may be loaded with the entries of D needed to test any particular
triangle inequality (similarly to (1141)-(1149)). Because all the triangle inequalities can
be individually tested using a test equivalent to the lone matrix inequality −V T

NDVN º0,
it logically follows that the lone matrix inequality tests all those triangle inequalities
simultaneously. We conclude that −V T

NDVN º 0 is a sufficient test for the fourth property
of the Euclidean metric, triangle inequality. ¨

5.8.2.2 Strict triangle inequality

Without exception, all the inequalities in (1149) and (1150) can be made strict while their
corresponding implications remain true. The then strict inequality (1149a) or (1150) may
be interpreted as a strict triangle inequality under which collinear arrangement of points is

5.38Accounting for symmetry property 3, the fourth metric property demands three inequalities be satisfied
per one of type (1149a). The first of those inequalities in (1150) is self evident from (1149a), while the
two remaining follow from the left-hand side of (1149a) and the fact for scalars, |a| ≤ b ⇔ a ≤ b and
−a ≤ b .
5.39To individually test triangle inequality |

√

dik−
√

dkj | ≤
√

dij ≤
√

dik +
√

dkj for particular i , k , j ,
set Ξr(i , 1)= Ξr(k, 2)= Ξr(j , 3)=1 and Ξc = I .
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not allowed. [239, §24/6, p.322] Hence by similar reasoning, −V T
NDVN ≻ 0 is a sufficient

test of all the strict triangle inequalities; id est,

δ(D) = 0

DT = D
−V T

NDVN ≻ 0







⇒
√

dij <
√

dik +
√

dkj , i 6=j 6=k (1152)

5.8.3 −V T
NDVN nesting

From (1146) observe that T =−V T
NDVN |N←3 . In fact, for D∈EDMN , the leading

principal submatrices of −V T
NDVN form a nested sequence (by inclusion) whose members

are individually positive semidefinite [174] [218] [348] and have the same form as T ;
videlicet,5.40

−V T
NDVN |N←1 = [ ∅ ] (o)

−V T
NDVN |N←2 = [d12] ∈ S+ (a)

−V T
NDVN |N←3 =

[

d12
1
2 (d12+d13−d23)

1
2 (d12+d13−d23) d13

]

= T ∈ S2

+ (b)

−V T
NDVN |N←4 =







d12
1
2 (d12+d13−d23)

1
2 (d12+d14−d24)

1
2 (d12+d13−d23) d13

1
2 (d13+d14−d34)

1
2 (d12+d14−d24)

1
2 (d13+d14−d34) d14






(c)

...

−V T
NDVN |N← i =





−V T
NDVN |N← i−1 ν(i)

ν(i)T d1i



 ∈ Si−1
+ (d)

...

−V T
NDVN =





−V T
NDVN |N←N−1 ν(N)

ν(N)T d1N



 ∈ SN−1
+ (e)

(1153)

where

ν(i) ,
1

2











d12+d1i−d2i

d13+d1i−d3i

...
d1,i−1+d1i−di−1,i











∈ Ri−2, i > 2 (1154)

Hence, the leading principal submatrices of EDM D must also be EDMs.5.41

5.40 −V DV |N←1 = 0 ∈ S
0
+ (§B.4.1)

5.41In fact, each and every principal submatrix of an EDM D is another EDM. [251, §4.1]
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Bordered symmetric matrices in the form (1153d) are known to have intertwined
[348, §6.4] (or interlaced [218, §4.3] [345, §IV.4.1]) eigenvalues; (confer §5.11.1) that means,
for the particular submatrices (1153a) and (1153b),

λ2 ≤ d12 ≤ λ1 (1155)

where d12 is the eigenvalue of submatrix (1153a) and λ1 , λ2 are the eigenvalues of T
(1153b) (1146). Intertwining in (1155) predicts that should d12 become 0, then λ2 must
go to 0 .5.42 The eigenvalues are similarly intertwined for submatrices (1153b) and (1153c);

γ3 ≤ λ2 ≤ γ2 ≤ λ1 ≤ γ1 (1156)

where γ1 , γ2 , γ3 are the eigenvalues of submatrix (1153c). Intertwining likewise predicts
that should λ2 become 0 (a possibility revealed in §5.8.3.1), then γ3 must go to 0.
Combining results so far for N = 2, 3, 4: (1155) (1156)

γ3 ≤ λ2 ≤ d12 ≤ λ1 ≤ γ1 (1157)

The preceding logic extends by induction through the remaining members of the
sequence (1153).

5.8.3.1 Tightening the triangle inequality

Now we apply Schur complement from §A.4 to tighten the triangle inequality from (1145)
in case: cardinality N = 4. We find that the gains by doing so are modest. From (1153)
we identify:

[

A B
BT C

]

, −V T
NDVN |N←4 (1158)

A , T = −V T
NDVN |N←3 (1159)

both positive semidefinite by assumption, where B= ν(4) (1154), and C = d14 . Using
nonstrict CC†-form (1600), Cº 0 by assumption (§5.8.1) and CC†= I . So by the
positive semidefinite ordering of eigenvalues theorem (§A.3.1.0.1),

−V T
NDVN |N←4 º 0 ⇔ T º d−1

14 ν(4)ν(4)T ⇒
{

λ1 ≥ d−1
14 ‖ν(4)‖2

λ2 ≥ 0
(1160)

where {d−1
14 ‖ν(4)‖2, 0} are the eigenvalues of d−1

14 ν(4)ν(4)T while λ1 , λ2 are the
eigenvalues of T .

5.8.3.1.1 Example. Small completion problem, II.
Applying the inequality for λ1 in (1160) to the small completion problem on page 360
Figure 130, the lower bound on

√
d14 (1.236 in (969)) is tightened to 1.289 . The correct

value of
√

d14 to three significant figures is 1.414 . 2

5.42If d12 were 0, eigenvalue λ2 becomes 0 (1148) because d13 must then be equal to d23 ; id est,
d12 = 0 ⇔ x1 = x2 . (§5.4)
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5.8.4 Affine dimension reduction in two dimensions

(confer §5.14.4) The leading principal 2×2 submatrix T of −V T
NDVN has largest

eigenvalue λ1 (1148) which is a convex function of D .5.43 λ1 can never be 0 unless
d12 = d13 = d23 = 0. Eigenvalue λ1 can never be negative while the dij are nonnegative.
The remaining eigenvalue λ2 (1148) is a concave function of D that becomes 0 only
at the upper and lower bounds of triangle inequality (1149a) and its equivalent forms:
(confer (1151))

|
√

d12 −
√

d23 | ≤
√

d13 ≤
√

d12 +
√

d23 (a)
⇔

|
√

d12 −
√

d13 | ≤
√

d23 ≤
√

d12 +
√

d13 (b)
⇔

|
√

d13 −
√

d23 | ≤
√

d12 ≤
√

d13 +
√

d23 (c)

(1161)

In between those bounds, λ2 is strictly positive; otherwise, it would be negative but
prevented by the condition T º 0.

When λ2 becomes 0, it means triangle △123 has collapsed to a line segment; a potential
reduction in affine dimension r . The same logic is valid for any particular principal 2×2
submatrix of −V T

NDVN , hence applicable to other triangles.

5.9 Bridge: Convex polyhedra to EDMs

The criteria for the existence of an EDM include, by definition (976) (1046), the properties
imposed upon its entries dij by the Euclidean metric. From §5.8.1 and §5.8.2, we know
there is a relationship of matrix criteria to those properties. Here is a snapshot of what
we are sure: for i , j , k∈{1 . . . N} (confer §5.2)

√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k

⇐
−V T

NDVN º 0
δ(D) = 0
DT = D

(1162)

all implied by D∈EDMN . In words, these four Euclidean metric properties are necessary
conditions for D to be a distance matrix. At the moment, we have no converse. As of
concern in §5.3, we have yet to establish metric requirements beyond the four Euclidean
metric properties that would allow D to be certified an EDM or might facilitate polyhedron
or list reconstruction from an incomplete EDM. We deal with this problem in §5.14. Our
present goal is to establish ab initio the necessary and sufficient matrix criteria that will

5.43The largest eigenvalue of any symmetric matrix is always a convex function of its entries, while the

smallest eigenvalue is always concave. [63, exmp.3.10] In our particular case, say d ,





d12

d13

d23



∈ R
3. Then

the Hessian (1861) ∇2λ1(d)º 0 certifies convexity whereas ∇2λ2(d)¹ 0 certifies concavity. Each Hessian
has rank equal to 1. The respective gradients ∇λ1(d) and ∇λ2(d) are nowhere 0 and can be uniquely
defined.
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subsume all the Euclidean metric properties and any further requirements5.44 for all N >1
(§5.8.3); id est,

−V T
NDVN º 0

D ∈ SN
h

}

⇔ D ∈ EDMN (995)

or for EDM definition (1055),

Ω º 0
√

δ(d) º 0

}

⇔ D = D(Ω , d) ∈ EDMN (1163)

5.9.1 Geometric arguments

5.9.1.0.1 Definition. Elliptope: [254] [251, §2.3] [120, §31.5]
a unique bounded immutable convex Euclidean body in Sn ; intersection of positive
semidefinite cone Sn

+ with that set of n hyperplanes defined by unity main diagonal;

En , Sn
+ ∩ {Φ∈ Sn | δ(Φ)=1} (1164)

a.k.a the set of all correlation matrices of dimension

dim En = n(n−1)/2 in Rn(n+1)/2 (1165)

An elliptope En is not a polyhedron, in general, but has some polyhedral faces and an
infinity of vertices.5.45 Of those, 2n−1 vertices (some extreme points of the elliptope)
are extreme directions yyT of the positive semidefinite cone, where the entries of vector
y∈Rn belong to {±1} and exercise every combination. Each of the remaining vertices
has rank, greater than one, belonging to the set {k>0 | k(k + 1)/2≤ n}. Each and every
face of an elliptope is exposed. △

In fact, any positive semidefinite matrix whose entries belong to {±1} is a rank-one
correlation matrix; and vice versa:5.46

5.9.1.0.2 Theorem. Elliptope vertices rank-one. [136, §2.1.1]
For Y ∈ Sn, y∈Rn, and all i , j∈{1 . . . n} (confer §2.3.1.0.1)

Y º 0 , Yij ∈ {±1} ⇔ Y = yyT, yi ∈ {±1} (1166)

⋄

5.44In 1935, Schoenberg [330, (1)] first extolled matrix product −V T
NDVN (1141) (predicated on

symmetry and selfdistance) specifically incorporating VN , albeit algebraically. He showed: nonnegativity
−yTV T

NDVN y ≥ 0, for all y∈R
N−1, is necessary and sufficient for D to be an EDM. Gower [178, §3]

remarks how surprising it is that such a fundamental property of Euclidean geometry was obtained so
late.
5.45Laurent defines vertex distinctly from the sense herein (§2.6.1.0.1); she defines vertex as a point
with full-dimensional (nonempty interior) normal cone (§E.10.3.2.1). Her definition excludes point C in
Figure 35, for example.
5.46As there are few equivalent conditions for rank constraints, this device is rather important for relaxing
integer, combinatorial, or Boolean problems.
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Figure 144: Elliptope E3 in isometrically isomorphic R6 (projected on R3) is a convex body
that appears to possess some kind of symmetry in this dimension; it resembles a malformed
pillow in the shape of a bulging tetrahedron. Elliptope relative boundary is not smooth
and comprises all set members (1164) having at least one 0 eigenvalue. [254, §2.1] This
elliptope has an infinity of vertices, but there are only four vertices corresponding to a
rank-1 matrix. Those yyT, evident in the illustration, have binary vector y∈R3 with
entries in {±1}.
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0

Figure 145: Elliptope E2 in isometrically isomorphic R3 is a line segment illustrated interior
to positive semidefinite cone S2

+ (Figure 46).

The elliptope for dimension n = 2 is a line segment in isometrically isomorphic
Rn(n+1)/2 (Figure 145). Obviously, cone(En) 6= Sn

+ . The elliptope for dimension n = 3
is realized in Figure 144.

5.9.1.0.3 Lemma. Hypersphere. (confer bullet p.368) [18, §4]
Matrix Ψ = [Ψij ]∈ SN belongs to the elliptope in SN iff there exist N points p on the

boundary of a hypersphere in Rrank Ψ having radius 1 such that

‖pi − pj‖2 = 2(1 − Ψij) , i , j =1 . . . N (1167)

⋄

There is a similar theorem for Euclidean distance matrices:
We derive matrix criteria for D to be an EDM, validating (995) using simple geometry;

distance to the polyhedron formed by the convex hull of a list of points (76) in Euclidean
space Rn.

5.9.1.0.4 EDM assertion.
D is a Euclidean distance matrix if and only if D∈ SN

h and distances-square from the
origin

{‖p(y)‖2 = −yTV T
NDVN y | y ∈ S − β} (1168)

correspond to points p in some bounded convex polyhedron

P − α = {p(y) | y ∈ S − β} (1169)

having N or fewer vertices embedded in an r-dimensional subspace A− α of Rn, where
α ∈ A = aff P and where domain of linear surjection p(y) is the unit simplex S⊂RN−1

+

shifted such that its vertex at the origin is translated to −β in RN−1. When β = 0, then
α = x1 . ⋄
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In terms of VN , the unit simplex (292) in RN−1 has an equivalent representation:

S = {s∈ RN−1 |
√

2VN s º −e1} (1170)

where e1 is as in (992). Incidental to the EDM assertion, shifting the unit-simplex domain
in RN−1 translates the polyhedron P in Rn. Indeed, there is a map from vertices of the
unit simplex to members of the list generating P ;

p : RN−1

p









































−β
e1 − β
e2 − β

...
eN−1 − β









































→

=

Rn



























x1 − α
x2 − α
x3 − α

...
xN − α



























(1171)

5.9.1.0.5 Proof. EDM assertion.
(⇒) We demonstrate that if D is an EDM, then each distance-square ‖p(y)‖2 described
by (1168) corresponds to a point p in some embedded polyhedron P − α . Assume D is
indeed an EDM; id est, D can be made from some list X of N unknown points in Euclidean
space Rn ; D = D(X) for X∈ Rn×N as in (976). Since D is translation invariant (§5.5.1),
we may shift the affine hull A of those unknown points to the origin as in (1111). Then
take any point p in their convex hull (86);

P − α = {p = (X − Xb1T)a | aT1 = 1, a º 0} (1172)

where α = Xb ∈ A ⇔ bT1 = 1. Solutions to aT1 = 1 are:5.47

a ∈
{

e1 +
√

2VN s | s∈ RN−1
}

(1173)

where e1 is as in (992). Similarly, b = e1 +
√

2VN β .

P − α = {p = X(I − (e1 +
√

2VNβ)1T)(e1 +
√

2VN s) |
√

2VN s º −e1}
= {p = X

√
2VN (s − β) |

√
2VN s º −e1}

(1174)

that describes the domain of p(s) as the unit simplex

S = {s |
√

2VN s º −e1} ⊂ RN−1
+ (1170)

Making the substitution s − β ← y

P − α = {p = X
√

2VN y | y ∈ S − β} (1175)

Point p belongs to a convex polyhedron P − α embedded in an r-dimensional subspace
of Rn because the convex hull of any list forms a polyhedron, and because the translated

5.47Since R(VN )=N (1T) and N (1T)⊥R(1) , then over all s∈R
N−1, VN s is a hyperplane through

the origin orthogonal to 1. Thus the solutions {a} constitute a hyperplane orthogonal to the vector 1,
and offset from the origin in R

N by any particular solution; in this case, a = e1 .
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affine hull A− α contains the translated polyhedron P − α (1114) and the origin (when
α ∈A), and because A has dimension r by definition (1116). Now, any distance-square
from the origin to the polyhedron P − α can be formulated

{pTp = ‖p‖2 = 2yTV T
NXTXVN y | y ∈ S − β} (1176)

Applying (1123) to (1176) we get (1168).
(⇐) To validate the EDM assertion in the reverse direction, we prove: If each
distance-square ‖p(y)‖2 (1168) on the shifted unit-simplex S−β⊂RN−1 corresponds to
a point p(y) in some embedded polyhedron P−α , then D is an EDM. The r-dimensional
subspace A− α ⊆ Rn is spanned by

p(S − β) = P − α (1177)

because A− α = aff(P − α) ⊇ P − α (1114). So, outside domain S − β of linear
surjection p(y) , simplex complement \S − β ⊂ RN−1 must contain domain of the
distance-square ‖p(y)‖2 = p(y)Tp(y) to remaining points in subspace A− α ; id est, to
the polyhedron’s relative exterior \P − α . For ‖p(y)‖2 to be nonnegative on the entire
subspace A− α , −V T

NDVN must be positive semidefinite and is assumed symmetric;5.48

−V T
NDVN , ΘT

p Θp (1178)

where5.49 Θp∈Rm×N−1 for some m≥ r . Because p(S − β) is a convex polyhedron,
it is necessarily a set of linear combinations of points from some length-N list because
every convex polyhedron having N or fewer vertices can be generated that way (§2.12.2).
Equivalent to (1168) are

{pTp | p ∈ P − α} = {pTp = yTΘT
p Θp y | y ∈ S − β} (1179)

Because p ∈ P − α may be found by factoring (1179), the list Θp is found by factoring
(1178). A unique EDM can be made from that list using inner-product form definition
D(Θ)|Θ=Θp

(1046). That EDM will be identical to D if δ(D)=0, by injectivity of D
(1097). ¨

5.9.2 Necessity and sufficiency

From (1139) we learned that matrix inequality −V T
NDVN º 0 is a necessary test for D to be

an EDM. In §5.9.1, the connection between convex polyhedra and EDMs was pronounced
by the EDM assertion; the matrix inequality together with D∈ SN

h became a sufficient
test when the EDM assertion demanded that every bounded convex polyhedron have a
corresponding EDM. For all N >1 (§5.8.3), the matrix criteria for the existence of an
EDM in (995), (1163), and (971) are therefore necessary and sufficient and subsume all
the Euclidean metric properties and further requirements.

5.48The antisymmetric part
(

−V T
NDVN − (−V T

NDVN )T
)

/2 is annihilated by ‖p(y)‖2. By the same
reasoning, any positive (semi)definite matrix A is generally assumed symmetric because only the symmetric
part (A +AT)/2 survives the test yTAy ≥ 0. [218, §7.1]
5.49 AT = A º 0 ⇔ A = RTR for some real matrix R . [348, §6.3]
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5.9.3 Example revisited

Now we apply the necessary and sufficient EDM criteria (995) to an earlier problem.

5.9.3.0.1 Example. Small completion problem, III. (confer §5.8.3.1.1)
Continuing Example 5.3.0.0.2 pertaining to Figure 130 where N = 4, distance-square d14

is ascertainable from the matrix inequality −V T
NDVN º 0. Because all distances in (968)

are known except
√

d14 , we may simply calculate the smallest eigenvalue of −V T
NDVN

over a range of d14 as in Figure 146. We observe a unique value of d14 satisfying (995)
where the abscissa axis is tangent to the hypograph of the smallest eigenvalue. Since the
smallest eigenvalue of a symmetric matrix is known to be a concave function (§5.8.4), we
calculate its second partial derivative with respect to d14 evaluated at 2 and find −1/3.
We conclude there are no other satisfying values of d14 . Further, that value of d14 does
not meet an upper or lower bound of a triangle inequality like (1151), so neither does it
cause the collapse of any triangle. Because the smallest eigenvalue is 0, affine dimension
r of any point list corresponding to D cannot exceed N−2. (§5.7.1.1) 2

5.10 EDM-entry composition

Laurent [251, §2.3] applies results from Schoenberg, 1938 [331], to show certain nonlinear
compositions of individual EDM entries yield EDMs; in particular,

D ∈ EDMN ⇔ [1 − e−αdij ] ∈ EDMN ∀α > 0 (a)

⇔ [e−αdij ] ∈ EN ∀α > 0 (b)
(1180)

where D = [dij ] and EN is the elliptope (1164).

5.10.0.0.1 Proof. (Monique Laurent, 2003) [331] (confer [243])

Lemma 2.1. from A Tour d’Horizon . . . on Completion Problems. [251]
For D=[dij , i , j =1 . . . N ]∈ SN

h and EN the elliptope in SN (§5.9.1.0.1), the
following assertions are equivalent:

(i) D ∈ EDMN

(ii) e−αD , [e−αdij ] ∈ EN for all α > 0

(iii) 11T− e−αD , [1 − e−αdij ] ∈ EDMN for all α > 0 ⋄

1) Equivalence of Lemma 2.1 (i) (ii) is stated in Schoenberg’s Theorem 1 [331, p.527].
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1 2 3 4
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smallest eigenvalue

d14

Figure 146: Smallest eigenvalue of −V T
NDVN makes it a PSD matrix for only one value

of d14 : 2.
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1/α
ij

log2(1+d
1/α
ij )

1−e−αdij

Figure 147: Some entrywise EDM compositions: (a) α = 2. Concave nondecreasing in
dij . (b) Trajectory convergence in α for dij = 2.
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2) (ii) ⇒ (iii) can be seen from the statement in the beginning of section 3, saying that
a distance space embeds in L2 iff some associated matrix is PSD. We reformulate it:

Let d =(dij)i,j=0,1...N be a distance space on N+1 points (i.e., symmetric
hollow matrix of order N+1) and let p =(pij)i,j=1...N be the symmetric matrix
of order N related by:

(A) 2pij = d0i + d0j − dij for i , j = 1 . . . N
or equivalently

(B) d0i = pii , dij = pii + pjj − 2pij for i , j = 1 . . . N

Then d embeds in L2 iff p is a positive semidefinite matrix iff d is of negative
type (second half page 525/top of page 526 in [331]).

For the implication from (ii) to (iii), set: p = e−αd and define d ′ from p using
(B) above. Then d ′ is a distance space on N+1 points that embeds in L2 .
Thus its subspace of N points also embeds in L2 and is precisely 1− e−αd.

Note that (iii) ⇒ (ii) cannot be read immediately from this argument since (iii)
involves the subdistance of d ′ on N points (and not the full d ′ on N+1 points).

3) Show (iii) ⇒ (i) by using the series expansion of the function 1− e−αd : the constant
term cancels, α factors out; there remains a summation of d plus a multiple of α .
Letting α go to 0 gives the result.

This is not explicitly written in Schoenberg, but he also uses such an argument;
expansion of the exponential function then α→ 0 (first proof on [331, p.526]). ¨

Schoenberg’s results [331, §6 thm.5] (confer [243, p.108-109]) also suggest certain finite
positive roots of EDM entries produce EDMs; specifically,

D ∈ EDMN ⇔ [d
1/α
ij ] ∈ EDMN ∀α > 1 (1181)

The special case α = 2 is of interest because it corresponds to absolute distance; e.g,

D∈EDMN ⇒ ◦
√

D ∈ EDMN (1182)

Assuming that points constituting a corresponding list X are distinct (1143), then it
follows: for D∈ SN

h

lim
α→∞

[d
1/α
ij ] = lim

α→∞
[1 − e−αdij ] = −E , 11T− I (1183)

Negative elementary matrix −E (§B.3) is: relatively interior to the EDM cone (§6.5),
on its axis, and terminal to respective trajectories (1180a) and (1181) as functions of α .
Both trajectories are confined to the EDM cone; in engineering terms, the EDM cone is
an invariant set [328] to either trajectory. Further, if D is not an EDM but for some
particular αp it becomes an EDM, then for all greater values of α it remains an EDM.

5.10.0.0.2 Exercise. Concave nondecreasing EDM-entry composition.

Given EDM D = [dij ] , empirical evidence suggests that the composition [ log2(1 + d
1/α
ij )]

is also an EDM for each fixed α≥ 1 [sic ] . Its concavity in dij is illustrated in Figure 147
together with functions from (1180a) and (1181). Prove whether it holds more generally:
Any concave nondecreasing composition of individual EDM entries dij on R+ produces
another EDM. H
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5.10.0.0.3 Exercise. Taxicab distance matrix as EDM.
Determine whether taxicab distance matrices (D1(X) in Example 3.7.0.0.2) are all
numerically equivalent to EDMs. Explain why or why not. H

5.10.1 EDM by elliptope

(confer (1002)) For some κ∈R+ and C∈ SN
+ in elliptope EN (§5.9.1.0.1), Alfakih asserts:

any given EDM D is expressible [10] [120, §31.5]

D = κ(11T− C ) ∈ EDMN (1184)

This expression exhibits nonlinear combination of variables κ and C . We therefore
propose a different expression requiring redefinition of the elliptope (1164) by scalar
parametrization;

En
t , Sn

+ ∩ {Φ∈ Sn | δ(Φ)= t1} (1185)

where, of course, En = En
1 . Then any given EDM D is expressible

D = t11T− E ∈ EDMN (1186)

which is linear in variables t∈R+ and E∈EN
t .

5.11 EDM indefiniteness

By known result (§A.7.2) regarding a 0-valued entry on the main diagonal of a symmetric
positive semidefinite matrix, there can be no positive or negative semidefinite EDM except
the 0 matrix because EDMN⊆ SN

h (975) and

SN
h ∩ SN

+ = 0 (1187)

the origin. So when D∈EDMN , there can be no factorization D =ATA or −D =ATA .
[348, §6.3] Hence eigenvalues of an EDM are neither all nonnegative or all nonpositive; an
EDM is indefinite and possibly invertible.

5.11.1 EDM eigenvalues, congruence transformation

For any symmetric −D , we can characterize its eigenvalues by congruence transformation:
[348, §6.3]

−WTDW = −
[

V T
N

1T

]

D [VN 1 ] = −
[

V T
NDVN V T

ND1

1TDVN 1TD1

]

∈ SN (1188)

Because
W , [VN 1 ]∈ RN×N (1189)

is full-rank, then (1605)

inertia(−D) = inertia
(

−WTDW
)

(1190)
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the congruence (1188) has the same number of positive, zero, and negative eigenvalues
as −D . Further, if we denote by {γi , i=1 . . . N−1} the eigenvalues of −V T

NDVN and
denote eigenvalues of the congruence −WTDW by {ζi , i=1 . . . N} and if we arrange
each respective set of eigenvalues in nonincreasing order, then by theory of interlacing
eigenvalues for bordered symmetric matrices [218, §4.3] [348, §6.4] [345, §IV.4.1]

ζN ≤ γN−1 ≤ ζN−1 ≤ γN−2 ≤ · · · ≤ γ2 ≤ ζ2 ≤ γ1 ≤ ζ1 (1191)

When D∈EDMN , then γi ≥ 0 ∀ i (1539) because −V T
NDVN º 0 as we know. That

means the congruence must have N−1 nonnegative eigenvalues; ζi ≥ 0, i=1 . . . N−1.
The remaining eigenvalue ζN cannot be nonnegative because then −D would be positive
semidefinite, an impossibility; so ζN < 0. By congruence, nontrivial −D must therefore
have exactly one negative eigenvalue;5.50 [120, §2.4.5]

D ∈ EDMN ⇒















λ(−D)i ≥ 0 , i=1 . . . N−1
(

N
∑

i=1

λ(−D)i = 0

)

D ∈ SN
h ∩ RN×N

+

(1192)

where the λ(−D)i are nonincreasingly ordered eigenvalues of −D whose sum must be 0
only because tr D = 0 [348, §5.1]. The eigenvalue summation condition, therefore, can be
considered redundant. Even so, all these conditions are insufficient to determine whether
some given H∈ SN

h is an EDM, as shown by counterexample.5.51

5.11.1.0.1 Exercise. Spectral inequality.
Prove whether it holds: for D=[dij ]∈EDMN

λ(−D)1 ≥ dij ≥ λ(−D)N−1 ∀ i 6= j (1193)

H

Terminology: a spectral cone is a convex cone containing all eigenspectra [243, p.365]
[345, p.26] corresponding to some set of matrices. Any positive semidefinite matrix, for
example, possesses a vector of nonnegative eigenvalues corresponding to an eigenspectrum
contained in a spectral cone that is a nonnegative orthant.

5.50All entries of the corresponding eigenvector must have the same sign, with respect to each other,
[93, p.116] because that eigenvector is the Perron vector corresponding to spectral radius; [218, §8.3.1]
the predominant characteristic of square nonnegative matrices. Unlike positive semidefinite matrices,
nonnegative matrices are guaranteed only to have at least one nonnegative eigenvalue.
5.51When N = 3, for example, the symmetric hollow matrix

H =





0 1 1
1 0 5
1 5 0



 ∈ S
N
h ∩ R

N×N
+

is not an EDM, although λ(−H) = [5 0.3723 −5.3723]T conforms to (1192).
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5.11.2 Spectral cones

Denoting the eigenvalues of Cayley-Menger matrix

[

0 1T

1 −D

]

∈ SN+1 by

λ

([

0 1T

1 −D

])

∈ RN+1 (1194)

we have the Cayley-Menger form (§5.7.3.0.1) of necessary and sufficient conditions for
D∈EDMN from the literature: [200, §3]5.52 [77, §3] [120, §6.2] (confer (995) (971))

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

i

≥ 0 , i = 1 . . . N

D ∈ SN
h











⇔
{

−V T
NDVN º 0

D ∈ SN
h

(1195)

These conditions say the Cayley-Menger form has one and only one negative eigenvalue.

When D is an EDM, eigenvalues λ

([

0 1T

1 −D

])

belong to that particular orthant in

RN+1 having the N+1th coordinate as sole negative coordinate5.53:
[

RN
+

R−

]

= cone {e1 , e2 , · · · eN , −eN+1} (1196)

5.11.2.1 Cayley-Menger versus Schoenberg

Connection to the Schoenberg criterion (995) is made when the Cayley-Menger form is
further partitioned:

[

0 1T

1 −D

]

=





[

0 1
1 0

] [

1T

−D1,2:N

]

[1 −D2:N,1 ] −D2:N,2:N



 (1197)

Matrix D∈ SN
h is an EDM if and only if the Schur complement of

[

0 1
1 0

]

(§A.4) in this

partition is positive semidefinite; [18, §1] [233, §3] id est, (confer (1141))

D ∈ EDMN

⇔
−D2:N,2:N − [1 −D2:N,1 ]

[

0 1
1 0

] [

1T

−D1,2:N

]

= −2V T
NDVN º 0

and

D ∈ SN
h

(1198)

Positive semidefiniteness of that Schur complement insures nonnegativity (D∈ RN×N
+ ,

§5.8.1), whereas complementary inertia (1607) insures existence of that lone negative
eigenvalue of the Cayley-Menger form.

Now we apply results from chapter 2 with regard to polyhedral cones and their duals.

5.52Recall: for D∈ S
N
h , −V T

NDVN º 0 subsumes nonnegativity property 1 (§5.8.1).
5.53Empirically, all except one entry of the corresponding eigenvector have the same sign with respect to
each other.
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5.11.2.2 Ordered eigenspectra

Conditions (1195) specify eigenvalue membership to the smallest pointed polyhedral

spectral cone for

[

0 1T

1 −EDMN

]

:

Kλ , {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN ≥ 0 ≥ ζN+1 , 1Tζ = 0}

= KM ∩
[

RN
+

R−

]

∩ ∂H

= λ

([

0 1T

1 −EDMN

])

(1199)

where

∂H , {ζ∈RN+1 | 1Tζ = 0} (1200)

is a hyperplane through the origin, and KM is the monotone cone (§2.13.9.4.3, implying
ordered eigenspectra) which is full-dimensional but is not pointed;

KM = {ζ∈RN+1 | ζ1 ≥ ζ2 ≥ · · · ≥ ζN+1} (435)

K∗
M = { [ e1− e2 e2−e3 · · · eN−eN+1 ] a | a º 0 } ⊂ RN+1 (436)

So because of the hyperplane,

dim aff Kλ = dim ∂H = N (1201)

indicating Kλ is not full-dimensional. Defining

A ,









eT
1 − eT

2

eT
2 − eT

3
...

eT
N − eT

N+1









∈ RN×N+1 , B ,













eT
1

eT
2
...

eT
N

−eT
N+1













∈ RN+1×N+1 (1202)

we have the halfspace-description:

Kλ = {ζ∈RN+1 | Aζ º 0 , Bζ º 0 , 1Tζ = 0} (1203)

From this and (443) we get a vertex-description for a pointed spectral cone that is not
full-dimensional:

Kλ =

{

VN

([

Â

B̂

]

VN

)†
b | b º 0

}

(1204)

where VN ∈ RN+1×N , and where [sic ]

B̂ = eT
N ∈ R1×N+1 (1205)
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and

Â =









eT
1 − eT

2

eT
2 − eT

3
...

eT
N−1− eT

N









∈ RN−1×N+1 (1206)

hold those rows of A and B corresponding to conically independent rows (§2.10) in
[

A
B

]

VN .

Conditions (1195) can be equivalently restated in terms of a spectral cone for Euclidean
distance matrices:

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈ KM ∩
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1207)

Vertex-description of the dual spectral cone is, (313)

K∗
λ = K∗

M +

[

RN
+

R−

]∗
+ ∂H∗ ⊆ RN+1

=
{ [

AT BT 1 −1
]

b | b º 0
}

=
{ [

ÂT B̂T 1 −1
]

a | a º 0
}

(1208)

From (1204) and (444) we get a halfspace-description:

K∗
λ = {y∈RN+1 | (V T

N [ ÂT B̂T ])
†
V T
N y º 0} (1209)

This polyhedral dual spectral cone K∗
λ is closed, convex, full-dimensional because Kλ is

pointed, but is not pointed because Kλ is not full-dimensional.

5.11.2.3 Unordered eigenspectra

Spectral cones are not unique; eigenspectra ordering can be rendered benign within a cone
by presorting a vector of eigenvalues into nonincreasing order.5.54 Then things simplify:
Conditions (1195) now specify eigenvalue membership to the spectral cone

λ

([

0 1T

1 −EDMN

])

=

[

RN
+

R−

]

∩ ∂H

= {ζ∈RN+1 | Bζ º 0 , 1Tζ = 0}
(1210)

where B is defined in (1202), and ∂H in (1200). From (443) we get a vertex-description

5.54Eigenspectra ordering (represented by a cone having monotone description such as (1199)) becomes
benign in (1421), for example, where projection of a given presorted vector on the nonnegative orthant
in a subspace is equivalent to its projection on the monotone nonnegative cone in that same subspace;
equivalence is a consequence of presorting.
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for a pointed spectral cone not full-dimensional:

λ

([

0 1T

1 −EDMN

])

=
{

VN (B̃VN )† b | b º 0
}

=

{[

I
−1T

]

b | b º 0

} (1211)

where VN ∈ RN+1×N and

B̃ ,









eT
1

eT
2
...

eT
N









∈ RN×N+1 (1212)

holds only those rows of B corresponding to conically independent rows in BVN .

For presorted eigenvalues, (1195) can be equivalently restated

D ∈ EDMN ⇔











λ

([

0 1T

1 −D

])

∈
[

RN
+

R−

]

∩ ∂H

D ∈ SN
h

(1213)

Vertex-description of the dual spectral cone is, (313)

λ

([

0 1T

1 −EDMN

])∗
=

[

RN
+

R−

]

+ ∂H∗ ⊆ RN+1

=
{ [

BT 1 −1
]

b | b º 0
}

=
{ [

B̃T 1 −1
]

a | a º 0
}

(1214)

From (444) we get a halfspace-description:

λ

([

0 1T

1 −EDMN

])∗
= {y∈RN+1 | (V T

N B̃T)†V T
N y º 0}

= {y∈RN+1 | [ I −1 ] y º 0}
(1215)

This polyhedral dual spectral cone is closed, convex, full-dimensional but is not pointed.
(Notice that any nonincreasingly ordered eigenspectrum belongs to this dual spectral
cone.)

5.11.2.4 Dual cone versus dual spectral cone

An open question regards the relationship of convex cones and their duals to the
corresponding spectral cones and their duals. A positive semidefinite cone, for example, is
selfdual. Both the nonnegative orthant and the monotone nonnegative cone are spectral
cones for it. When we consider the nonnegative orthant, then that spectral cone for the
selfdual positive semidefinite cone is also selfdual.
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5.12 List reconstruction

The term metric multidimensional scaling5.55 [273] [112] [372] [110] [276] [93] refers
to any reconstruction of a list X∈ Rn×N in Euclidean space from interpoint distance
information, possibly incomplete (§6.7), ordinal (§5.13.2), or specified perhaps only by
bounding-constraints (§5.4.2.2.12) [370]. Techniques for reconstruction are essentially
methods for optimally embedding an unknown list of points, corresponding to given
Euclidean distance data, in an affine subset of desired or minimum dimension. The
oldest known precursor is called principal component analysis [181] which analyzes the
correlation matrix (§5.9.1.0.1); [54, §22] a.k.a, Karhunen-Loéve transform in the digital
signal processing literature.

Isometric reconstruction (§5.5.3) of point list X is best performed by eigenvalue
decomposition of a Gram matrix; for then, numerical errors of factorization are easily
spotted in the eigenvalues: Now we consider how rotation/reflection and translation
invariance factor into a reconstruction.

5.12.1 x1 at the origin. VN

At the stage of reconstruction, we have D∈EDMN and wish to find a generating list
(§2.3.2) for polyhedron P − α by factoring Gram matrix −V T

NDVN (993) as in (1178).
One way to factor −V T

NDVN is via diagonalization of symmetric matrices; [348, §5.6]
[218] (§A.5.1, §A.3)

−V T
NDVN , QΛQT (1216)

QΛQT º 0 ⇔ Λ º 0 (1217)

where Q∈RN−1×N−1 is an orthogonal matrix containing eigenvectors while Λ∈ SN−1

is a diagonal matrix containing corresponding nonnegative eigenvalues ordered by
nonincreasing value. From the diagonalization, identify the list using (1123);

−V T
NDVN = 2V T

NXTXVN , Q
√

Λ QT
pQp

√
Λ QT (1218)

where
√

Λ QT
pQp

√
Λ , Λ =

√
Λ
√

Λ and where Qp∈ Rn×N−1 is unknown as is its dimension
n . Rotation/reflection is accounted for by Qp yet only its first r columns are necessarily
orthonormal.5.56 Assuming membership to the unit simplex y∈S (1175), then point
p = X

√
2VN y = Qp

√
Λ QTy in Rn belongs to the translated polyhedron

P − x1 (1219)

5.55Scaling [368] means making a scale, i.e., a numerical representation of qualitative data. If the scale
is multidimensional, it’s multidimensional scaling. −Jan de Leeuw
A goal of multidimensional scaling is to find a low-dimensional representation of list X so that distances
between its elements best fit a given set of measured pairwise dissimilarities. When data comprises
measurable distances, then reconstruction is termed metric multidimensional scaling. In one dimension,
N coordinates in X define the scale.
5.56Recall r signifies affine dimension. Qp is not necessarily an orthogonal matrix. Qp is constrained such
that only its first r columns are necessarily orthonormal because there are only r nonzero eigenvalues in
Λ when −V T

NDVN has rank r (§5.7.1.1). Remaining columns of Qp are arbitrary.
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whose generating list constitutes the columns of (1117)

[

0 X
√

2VN
]

=
[

0 Qp

√
Λ QT

]

∈ Rn×N

= [0 x2−x1 x3−x1 · · · xN −x1 ]
(1220)

The scaled auxiliary matrix VN represents that translation. A simple choice for Qp has
n set to N− 1; id est, Qp = I . Ideally, each member of the generating list has at most
r nonzero entries; r being, affine dimension

rankV T
NDVN = rankQp

√
Λ QT = rank Λ = r (1221)

Each member then has at least N−1 − r zeros in its higher-dimensional coordinates
because r ≤ N−1. (1129) To truncate those zeros, choose n equal to affine dimension
which is the smallest n possible because XVN has rank r≤ n (1125).5.57 In that case,
the simplest choice for Qp is [ I 0 ] having dimension r×N−1.

We may wish to verify the list (1220) found from the diagonalization of −V T
NDVN .

Because of rotation/reflection and translation invariance (§5.5), EDM D can be uniquely
made from that list by calculating: (976)

D(X) = D(X[0
√

2VN ]) = D(Qp[0
√

Λ QT ]) = D([0
√

ΛQT ]) (1222)

This suggests a way to find EDM D given −V T
NDVN (confer (1101))

D =

[

0
δ
(

−V T
NDVN

)

]

1T + 1
[

0 δ
(

−V T
NDVN

)T
]

− 2

[

0 0T

0 −V T
NDVN

]

(1097)

5.12.2 0 geometric center. V

Alternatively we may perform reconstruction using auxiliary matrix V (§B.4.1) and Gram
matrix −V D V 1

2 (997) instead; to find a generating list for polyhedron

P − αc (1223)

whose geometric center has been translated to the origin. Redimensioning diagonalization
factors Q, Λ∈RN×N and unknown Qp∈ Rn×N , (1124)

−V D V = 2V XTX V , Q
√

Λ QT
pQp

√
Λ QT , QΛQT (1224)

where the geometrically centered generating list constitutes (confer (1220))

XV = 1√
2

Qp

√
Λ QT ∈ Rn×N

= [x1− 1
N X1 x2− 1

N X1 x3− 1
N X1 · · · xN − 1

N X1 ]
(1225)

5.57 If we write QT =







qT
1
..
.

qT
N−1






as rowwise eigenvectors, Λ =











λ1 0
. . .

λr
0 . . .

0 0











in terms of

eigenvalues, and Qp =
[

qp1 · · · qpN−1

]

as column vectors, then Qp

√
Λ QT =

r
∑

i=1

√
λi qpiq

T
i is a sum of r

linearly independent rank-one matrices (§B.1.1). Hence the summation has rank r .
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where αc = 1
N X1. (§5.5.1.0.1) The simplest choice for Qp is [ I 0 ]∈Rr×N .

Now EDM D can be uniquely made from the list found: (976)

D(X) = D(XV ) = D(
1√
2

Qp

√
Λ QT) = D(

√
ΛQT)

1

2
(1226)

This EDM is, of course, identical to (1222). Similarly to (1097), from −V D V we can
find EDM D (confer (1088))

D = δ(−V D V 1
2 )1T + 1δ(−V D V 1

2 )T − 2(−V D V 1
2 ) (1087)

5.13 Reconstruction examples

5.13.1 Isometric reconstruction

5.13.1.0.1 Example. Cartography.
The most fundamental application of EDMs is to reconstruct relative point position given
only interpoint distance information. Drawing a map of the United States is a good
illustration of isometric reconstruction (§5.4.2.2.10) from complete distance data. We
obtained latitude and longitude information for the coast, border, states, and Great Lakes
from the usalo atlas data file within Matlab Mapping Toolbox; conversion to Cartesian
coordinates (x, y , z) via:

φ , π/2 − latitude

θ , longitude
x = sin(φ) cos(θ)
y = sin(φ) sin(θ)
z = cos(φ)

(1227)

We used 64% of the available map data to calculate EDM D from N = 5020 points.
The original (decimated) data and its isometric reconstruction via (1218) are shown in
Figure 148a-d. [400, Matlab code] The eigenvalues computed for (1216) are

λ(−V T
NDVN ) = [199.8 152.3 2.465 0 0 0 · · · ]T (1228)

The 0 eigenvalues have absolute numerical error on the order of 2E-13 ; meaning, the
EDM data indicates three dimensions (r = 3) are required for reconstruction to nearly
machine precision. 2

5.13.2 Isotonic reconstruction

Sometimes only comparative information about distance is known (Earth is closer to the
Moon than it is to the Sun). Suppose, for example, EDM D for three points is unknown:

D = [dij ] =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ S3

h (965)

http://convexoptimization.com/TOOLS/USALO
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(a)

(b)

(c)

(d)

(f) (e)

Figure 148: Map of United States of America showing some state boundaries and the
Great Lakes. All plots made by connecting 5020 points. Any difference in scale in (a)
through (d) is artifact of plotting routine.
(a) Shows original map made from decimated (latitude, longitude) data.
(b) Original map data rotated (freehand) to highlight curvature of Earth.
(c) Map isometrically reconstructed from an EDM (from distance only).
(d) Same reconstructed map illustrating curvature.
(e)(f) Two views of one isotonic reconstruction (from comparative distance);

problem (1236) with no sort constraint Π d (and no hidden line removal).



5.13. RECONSTRUCTION EXAMPLES 427

but comparative distance data is available:

d13 ≥ d23 ≥ d12 (1229)

With vectorization d = [d12 d13 d23]
T∈R3, we express the comparative data as the

nonincreasing sorting

Π d =





0 1 0
0 0 1
1 0 0









d12

d13

d23



 =





d13

d23

d12



 ∈ KM+ (1230)

where Π is a given permutation matrix expressing known sorting action on the entries of
unknown EDM D , and KM+ is the monotone nonnegative cone (§2.13.9.4.2)

KM+ = {z | z1 ≥ z2 ≥ · · · ≥ zN(N−1)/2 ≥ 0} ⊆ RN(N−1)/2
+ (428)

where N(N−1)/2 = 3 for the present example. From sorted vectorization (1230) we
create the sort-index matrix

O =





0 12 32

12 0 22

32 22 0



 ∈ S3

h ∩ R3×3

+ (1231)

generally defined
Oij , k2 | dij = (ΞΠ d)k , j 6= i (1232)

where Ξ is a permutation matrix (1828) completely reversing order of vector entries.
Replacing EDM data with indices-square of a nonincreasing sorting like this is, of

course, a heuristic we invented and may be regarded as a nonlinear introduction of
much noise into the Euclidean distance matrix. For large data sets, this heuristic makes
an otherwise intense problem computationally tractable; we see an example in relaxed
problem (1237).

Any process of reconstruction that leaves comparative distance information intact
is called ordinal multidimensional scaling or isotonic reconstruction. Beyond rotation,
reflection, and translation error, (§5.5) list reconstruction by isotonic reconstruction is
subject to error in absolute scale (dilation) and distance ratio. Yet Borg & Groenen
argue: [54, §2.2] reconstruction from complete comparative distance information for a
large number of points is as highly constrained as reconstruction from an EDM; the larger
the number, the smaller the optimal solution set; whereas,

isotonic solution set ⊇ isometric solution set (1233)

5.13.2.1 Isotonic cartography

To test Borg & Groenen’s conjecture, suppose we make a complete sort-index matrix
O∈ SN

h ∩ RN×N
+ for the map of the USA and then substitute O in place of EDM D in

the reconstruction process of §5.12. Whereas EDM D returned only three significant
eigenvalues (1228), the sort-index matrix O is generally not an EDM (certainly not an
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λ(−V T
N OVN )j

Figure 149: Largest ten eigenvalues, of −V T
N OVN for USA map, sorted by decreasing value.

EDM with corresponding affine dimension 3) so returns many more. The eigenvalues,
calculated with absolute numerical error approximately 5E-7 , are plotted in Figure 149:

λ(−V T
N OVN ) = [880.1 463.9 186.1 46.20 17.12 9.625 8.257 1.701 0.7128 0.6460 · · · ]T

(1234)
The extra eigenvalues indicate that affine dimension corresponding to an EDM near
O is likely to exceed 3. To realize the map, we must simultaneously reduce that
dimensionality and find an EDM D closest to O in some sense5.58 while maintaining
the known comparative distance relationship. For example: given permutation matrix Π
expressing the known sorting action like (1230) on entries

d ,
1√
2

dvec D =

























d12

d13

d23

d14

d24

d34...
dN−1,N

























∈ RN(N−1)/2 (1235)

of unknown D∈ SN
h , we can make sort-index matrix O input to the optimization problem

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

Π d ∈ KM+

D ∈ EDMN

(1236)

5.58 a problem explored more in §7.
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that finds the EDM D (corresponding to affine dimension not exceeding 3 in isomorphic
dvec EDMN∩ ΠTKM+) closest to O in the sense of Schoenberg (995).

Analytical solution to this problem, ignoring the sort constraint Π d∈KM+ , is known
[372]: we get the convex optimization [sic ] (§7.1)

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(1237)

Only the three largest nonnegative eigenvalues in (1234) need be retained to make list
(1220); the rest are discarded. The reconstruction from EDM D found in this manner
is plotted in Figure 148e-f. (In the Matlab code on Wıκımization [393], matrix O is

normalized by (N(N−1)/2)
2
.) From these plots it becomes obvious that inclusion of the

sort constraint is necessary for isotonic reconstruction.
That sort constraint demands: any optimal solution D⋆ must possess the known

comparative distance relationship that produces the original ordinal distance data O
(1232). Ignoring the sort constraint, apparently, violates it. Yet even more remarkable is
how much the map reconstructed using only ordinal data still resembles the original map of
the USA after suffering the many violations produced by solving relaxed problem (1237).
This suggests the simple reconstruction techniques of §5.12 are robust to a significant
amount of noise.

5.13.2.2 Isotonic solution with sort constraint

Because problems involving rank are generally difficult, we will partition (1236) into two
problems we know how to solve and then alternate their solution until convergence:

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

(a)

minimize
σ

‖σ − Π d‖
subject to σ ∈ KM+

(b)

(1238)

where sort-index matrix O (a given constant in (a)) becomes an implicit vector variable
o i solving the ith instance of (1238b)

1√
2

dvec Oi = o i , ΠTσ⋆ ∈ RN(N−1)/2 , i∈{1, 2, 3 . . .} (1239)

As mentioned in discussion of relaxed problem (1237), a closed-form solution to problem
(1238a) exists. Only the first iteration of (1238a) sees the original sort-index matrix
O whose entries are nonnegative whole numbers; id est, O0 =O∈ SN

h ∩ RN×N
+ (1232).

Subsequent iterations i take the previous solution of (1238b) as input

Oi = dvec−1(
√

2 o i ) ∈ SN (1240)
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real successors, estimating distance-square not order, to the sort-index matrix O .

New convex problem (1238b) finds the unique minimum-distance projection of Π d on
the monotone nonnegative cone KM+ . By defining

Y †T = [e1− e2 e2− e3 e3− e4 · · · em] ∈ Rm×m (429)

where m,N(N−1)/2, we may rewrite (1238b) as an equivalent quadratic program; a
convex problem in terms of the halfspace-description of KM+ :

minimize
σ

(σ − Π d)T(σ − Π d)

subject to Y †σ º 0
(1241)

This quadratic program can be converted to a semidefinite program via Schur-form
(§3.5.2); we get the equivalent problem

minimize
t∈R , σ

t

subject to

[

tI σ − Π d
(σ − Π d)T 1

]

º 0

Y †σ º 0

(1242)

5.13.2.3 Convergence

In §E.10 we discuss convergence of alternating projection on intersecting convex sets in a
Euclidean vector space; convergence to a point in their intersection. Here the situation is
different for two reasons:

Firstly, sets of positive semidefinite matrices having an upper bound on rank are
generally not convex. Yet in §7.1.4.0.1 we prove that (1238a) is equivalent to a projection
of nonincreasingly ordered eigenvalues on a subset of the nonnegative orthant:

minimize
D

‖−V T
N (D − O)VN ‖F

subject to rankV T
NDVN ≤ 3

D ∈ EDMN

≡
minimize

Υ
‖Υ − Λ‖F

subject to δ(Υ)∈
[

R3

+

0

]

(1243)

where −V T
NDVN ,UΥUT∈ SN−1 and −V T

N OVN ,QΛQT∈ SN−1 are ordered
diagonalizations (§A.5). It so happens: optimal orthogonal U⋆ always equals Q
given. Linear operator T (A) = U⋆TAU⋆, acting on square matrix A , is an isometry
because Frobenius’ norm is orthogonally invariant (48). This isometric isomorphism T
thus maps a nonconvex problem to a convex one that preserves distance.

Secondly, the second half (1238b) of the alternation takes place in a different vector
space; SN

h (versus SN−1). From §5.6 we know these two vector spaces are related by an
isomorphism, SN−1 =VN (SN

h ) (1106), but not by an isometry.

We have, therefore, no guarantee from theory of alternating projection that the
alternation (1238) converges to a point, in the set of all EDMs corresponding to affine
dimension not in excess of 3, belonging to dvec EDMN∩ ΠTKM+ .
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5.13.2.4 Interlude

Map reconstruction from comparative distance data, isotonic reconstruction, would also
prove invaluable to stellar cartography where absolute interstellar distance is difficult to
acquire. But we have not yet implemented the second half (1241) of alternation (1238) for
USA map data because memory-demands exceed capability of our computer.

5.13.2.4.1 Exercise. Convergence of isotonic solution by alternation.
Empirically demonstrate convergence, discussed in §5.13.2.3, on a smaller data set.

H

It would be remiss not to mention another method of solution to this isotonic
reconstruction problem: Once again we assume only comparative distance data like (1229)
is available. Given known set of indices I

minimize
D

rankV D V

subject to dij ≤ dkl ≤ dmn ∀(i , j , k , l ,m , n)∈ I
D ∈ EDMN

(1244)

this problem minimizes affine dimension while finding an EDM whose entries satisfy known
comparative relationships. Suitable rank heuristics are discussed in §4.4.1 and §7.2.2 that
will transform this to a convex optimization problem.

Using contemporary computers, even with a rank heuristic in place of the objective
function, this problem formulation is more difficult to compute than the relaxed
counterpart problem (1237). That is because there exist efficient algorithms to compute
a selected few eigenvalues and eigenvectors from a very large matrix. Regardless, it is
important to recognize: the optimal solution set for this problem (1244) is practically
always different from the optimal solution set for its counterpart, problem (1236).

5.14 Fifth property of Euclidean metric

We continue now with the question raised in §5.3 regarding necessity for at least one
requirement more than the four properties of the Euclidean metric (§5.2) to certify
realizability of a bounded convex polyhedron or to reconstruct a generating list for it from
incomplete distance information. There we saw that the four Euclidean metric properties
are necessary for D∈EDMN in the case N = 3, but become insufficient when cardinality
N exceeds 3 (regardless of affine dimension).

5.14.1 Recapitulate

In the particular case N = 3, −V T
NDVN º 0 (1147) and D∈ S3

h are necessary and sufficient
conditions for D to be an EDM. By (1149), triangle inequality is then the only Euclidean
condition bounding the necessarily nonnegative dij ; and those bounds are tight. That
means the first four properties of the Euclidean metric are necessary and sufficient



432 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX

conditions for D to be an EDM in the case N = 3 ; for i , j∈{1, 2, 3}
√

dij ≥ 0 , i 6= j
√

dij = 0 , i = j
√

dij =
√

dji
√

dij ≤
√

dik +
√

dkj , i 6=j 6=k

⇔ −V T
NDVN º 0

D ∈ S3

h
⇔ D ∈ EDM3 (1245)

Yet those four properties become insufficient when N > 3.

5.14.2 Derivation of the fifth

Correspondence between the triangle inequality and the EDM was developed in §5.8.2
where a triangle inequality (1149a) was revealed within the leading principal 2×2
submatrix of −V T

NDVN when positive semidefinite. Our choice of the leading principal
submatrix was arbitrary; actually, a unique triangle inequality like (1044) corresponds to
any one of the (N−1)!/(2!(N−1 − 2)!) principal 2×2 submatrices.5.59 Assuming D∈ S4

h

and −V T
NDVN ∈ S3, then by the positive (semi)definite principal submatrices theorem

(§A.3.1.0.4) it is sufficient to prove: all dij are nonnegative, all triangle inequalities
are satisfied, and det(−V T

NDVN ) is nonnegative. When N = 4, in other words, that
nonnegative determinant becomes the fifth and last Euclidean metric requirement for
D∈EDMN . We now endeavor to ascribe geometric meaning to it.

5.14.2.1 Nonnegative determinant

By (1050) when D∈EDM4, −V T
NDVN is equal to inner product (1045),

ΘTΘ =





d12

√

d12d13 cos θ213

√

d12d14 cos θ214
√

d12d13 cos θ213 d13

√

d13d14 cos θ314
√

d12d14 cos θ214

√

d13d14 cos θ314 d14



 (1246)

Because Euclidean space is an inner-product space, the more concise inner-product form
of the determinant is admitted;

det(ΘTΘ) = −d12d13d14

(

cos(θ213)
2+cos(θ214)

2+cos(θ314)
2 − 2 cos θ213 cos θ214 cos θ314 − 1

)

(1247)
The determinant is nonnegative if and only if

cos θ214 cos θ314 −
√

sin(θ214)2 sin(θ314)2 ≤ cos θ213 ≤ cos θ214 cos θ314 +
√

sin(θ214)2 sin(θ314)2

⇔
cos θ213 cos θ314 −

√

sin(θ213)2 sin(θ314)2 ≤ cos θ214 ≤ cos θ213 cos θ314 +
√

sin(θ213)2 sin(θ314)2

⇔
cos θ213 cos θ214 −

√

sin(θ213)2 sin(θ214)2 ≤ cos θ314 ≤ cos θ213 cos θ214 +
√

sin(θ213)2 sin(θ214)2

(1248)

5.59There are fewer principal 2 × 2 submatrices in −V T
NDVN than there are triangles made by four or

more points because there are N !/(3!(N− 3)!) triangles made by point triples. The triangles corresponding
to those submatrices all have vertex x1 . (confer §5.8.2.1)
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θ213

−θ214

−θ314

π

Figure 150: The relative-angle inequality tetrahedron (1251) bounding EDM4 is regular;
drawn in entirety. Each angle θ (1042) must belong to this solid to be realizable.

which simplifies, for 0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π and all i 6=j 6=ℓ∈{2, 3, 4} , to

cos(θi1ℓ + θℓ1j) ≤ cos θi1j ≤ cos(θi1ℓ − θℓ1j) (1249)

Analogously to triangle inequality (1161), the determinant is 0 upon equality on either
side of (1249) which is tight. Inequality (1249) can be equivalently written linearly as a
triangle inequality between relative angles [432, §1.4];

|θi1ℓ − θℓ1j | ≤ θi1j ≤ θi1ℓ + θℓ1j

θi1ℓ + θℓ1j + θi1j ≤ 2π

0 ≤ θi1ℓ , θℓ1j , θi1j ≤ π

(1250)

Generalizing this:

5.14.2.1.1 Fifth property of Euclidean metric - restatement.
Relative-angle inequality. [51] [52, p.17, p.107] [251, §3.1]
(confer §5.3.1.0.1) Augmenting the four fundamental Euclidean metric properties in
Rn, for all i, j, ℓ 6= k∈{1 . . . N } , i<j <ℓ , and for N ≥ 4 distinct points {xk} , the
inequalities

|θikℓ − θℓkj | ≤ θikj ≤ θikℓ + θℓkj (a)

θikℓ + θℓkj + θikj ≤ 2π (b)

0 ≤ θikℓ , θℓkj , θikj ≤ π (c)

(1251)

where θikj = θjki is the angle between vectors at vertex xk (as defined in (1042)
and illustrated in Figure 131), must be satisfied at each point xk regardless of affine
dimension. ⋄
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Because point labelling is arbitrary, this fifth Euclidean metric requirement must apply
to each of the N points as though each were in turn labelled x1 ; hence the new index k
in (1251). Just as the triangle inequality is the ultimate test for realizability of only three
points, the relative-angle inequality is the ultimate test for only four. For four distinct
points, the triangle inequality remains a necessary although penultimate test; (§5.4.3)

Four Euclidean metric properties (§5.2).
Angle θ inequality (970) or (1251).

⇔ −V T
NDVN º 0

D ∈ S4

h

⇔ D = D(Θ)∈ EDM4 (1252)

The relative-angle inequality, for this case, is illustrated in Figure 150.

5.14.2.2 Beyond the fifth metric property

When cardinality N exceeds 4, the first four properties of the Euclidean metric and the
relative-angle inequality together become insufficient conditions for realizability. In other
words, the four Euclidean metric properties and relative-angle inequality remain necessary
but become a sufficient test only for positive semidefiniteness of all the principal 3 × 3
submatrices [sic ] in −V T

NDVN . Relative-angle inequality can be considered the ultimate
test only for realizability at each vertex xk of each and every purported tetrahedron
constituting a hyperdimensional body.

When N = 5 in particular, relative-angle inequality becomes the penultimate
Euclidean metric requirement while nonnegativity of then unwieldy det(ΘTΘ) corresponds
(by the positive (semi)definite principal submatrices theorem in §A.3.1.0.4) to the sixth
and last Euclidean metric requirement. Together these six tests become necessary and
sufficient, and so on.

Yet for all values of N , only assuming nonnegative dij , relative-angle matrix
inequality in (1163) is necessary and sufficient to certify realizability; (§5.4.3.1)

Euclidean metric property 1 (§5.2).
Angle matrix inequality Ω º 0 (1051).

⇔ −V T
NDVN º 0

D ∈ SN
h

⇔ D = D(Ω , d)∈ EDMN (1253)

Like matrix criteria (971), (995), and (1163), the relative-angle matrix inequality
and nonnegativity property subsume all the Euclidean metric properties and further
requirements.

5.14.3 Path not followed

As a means to test for realizability of four or more points, an intuitively
appealing way to augment the four Euclidean metric properties is to
recognize generalizations of the triangle inequality: In the case of
cardinality N = 4, the three-dimensional analogue to triangle & distance is
tetrahedron & facet-area, while in case N = 5 the four-dimensional analogue
is polychoron & facet-volume, ad infinitum. For N points, N + 1 metric
properties are required.



5.14. FIFTH PROPERTY OF EUCLIDEAN METRIC 435

5.14.3.1 N = 4

Each of the four facets of a general tetrahedron is a triangle and its relative
interior. Suppose we identify each facet of the tetrahedron by its area-square:
c1 , c2 , c3 , c4 . Then analogous to metric property 4, we may write a tight5.60

area inequality for the facets

√
ci ≤ √

cj +
√

ck +
√

cℓ , i 6=j 6=k 6=ℓ∈{1, 2, 3, 4} (1254)

which is a generalized “triangle” inequality [243, §1.1] that follows from

√
ci =

√
cj cos ϕij +

√
ck cos ϕik +

√
cℓ cos ϕiℓ (1255)

[258] [412, Law of Cosines] where ϕij is the dihedral angle at the common edge
between triangular facets i and j .

If D is the EDM corresponding to the whole tetrahedron, then area-square
of the ith triangular facet has a convenient formula in terms of Di∈ EDMN−1

the EDM corresponding to that particular facet: From the Cayley-Menger
determinant5.61 for simplices, [412] [142] [178, §4] [92, §3.3] the ith facet
area-square for i∈{1 . . . N} is (§A.4.1)

ci =
−1

2N−2(N−2)!2
det

[

0 1T

1 −Di

]

(1256)

=
(−1)N

2N−2(N−2)!2
det Di

(

1TD−1
i 1

)

(1257)

=
(−1)N

2N−2(N−2)!2
1Tcof(Di)

T1 (1258)

where Di is the ith principal N−1×N−1 submatrix5.62 of D∈EDMN , and
cof(Di) is the N−1×N−1 matrix of cofactors [348, §4] corresponding to Di .
The number of principal 3 × 3 submatrices in D is, of course, equal to the
number of triangular facets in the tetrahedron; four (N !/(3!(N−3)!)) when
N = 4.

5.14.3.1.1 Exercise. Sufficiency conditions for an EDM of four points.
Triangle inequality (property 4) and area inequality (1254) are conditions
necessary for D to be an EDM. Prove their sufficiency in conjunction with
the remaining three Euclidean metric properties. H

5.60The upper bound is met when all angles in (1255) are simultaneously 0 ; that occurs, for example, if
one point is relatively interior to the convex hull of the three remaining.
5.61 whose foremost characteristic is: the determinant vanishes if and only if affine dimension does not

equal penultimate cardinality; id est, det

[

0 1T

1 −D

]

= 0 ⇔ r < N−1 where D is any EDM (§5.7.3.0.1).

Otherwise, the determinant is negative.
5.62Every principal submatrix of an EDM remains an EDM. [251, §4.1]

http://mathworld.wolfram.com/LawofCosines.html
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5.14.3.2 N = 5

Moving to the next level, we might encounter a Euclidean body called
polychoron: a bounded polyhedron in four dimensions.5.63 Our polychoron
has five (N !/(4!(N −4)!)) facets, each of them a general tetrahedron whose
volume-square ci is calculated using the same formula; (1256) where
D is the EDM corresponding to the polychoron, and Di is the EDM
corresponding to the ith facet (the principal 4 × 4 submatrix of D∈EDMN

corresponding to the ith tetrahedron). The analogue to triangle & distance
is now polychoron & facet-volume. We could then write another generalized
“triangle” inequality like (1254) but in terms of facet volume; [418, §IV]

√
ci ≤ √

cj +
√

ck +
√

cℓ +
√

cm , i 6=j 6=k 6=ℓ 6=m∈{1 . . . 5} (1259)

5.14.3.2.1 Exercise. Sufficiency for an EDM of five points.
For N = 5, triangle (distance) inequality (§5.2), area inequality (1254), and
volume inequality (1259) are conditions necessary for D to be an EDM. Prove
their sufficiency. H

5.14.3.3 Volume of simplices

There is no known formula for the volume of a bounded general convex
polyhedron expressed either by halfspace or vertex-description. [430, §2.1]
[299, p.173] [249] [189] [190] Volume is a concept germane to R3 ; in higher
dimensions it is called content. Applying the EDM assertion (§5.9.1.0.4)
and a result from [63, p.407], a general nonempty simplex (§2.12.3) in RN−1

corresponding to an EDM D∈ SN
h has content

√
c = content(S)

√

det(−V T
NDVN ) (1260)

where content-square of the unit simplex S⊂RN−1 is proportional to its
Cayley-Menger determinant;

content(S)2 =
−1

2N−1(N−1)!2
det

[

0 1T

1 −D([0 e1 e2 · · · eN−1 ])

]

(1261)

where ei∈RN−1 and the EDM operator used is D(X) (976).

5.14.3.3.1 Example. Pyramid.
A formula for volume of a pyramid is known;5.64 it is 1

3 the product of its
base area with its height. [239] The pyramid in Figure 151 has volume 1

3 .
To find its volume using EDMs, we must first decompose the pyramid into

5.63The simplest polychoron is called a pentatope [412]; a regular simplex hence convex. (A pentahedron
is a three-dimensional body having five vertices.)
5.64Pyramid volume is independent of the paramount vertex position as long as its height remains constant.
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.

h

R

a

Figure 151: Length of one-dimensional face a equals height h=a=1 of this convex
nonsimplicial pyramid in R3 with square base inscribed in a circle of radius R centered at
the origin. [412, Pyramid ]

simplicial parts. Slicing it in half along the plane containing the line segments
corresponding to radius R and height h we find the vertices of one simplex,

X =





1/2 1/2 −1/2 0
1/2 −1/2 −1/2 0
0 0 0 1



∈ Rn×N (1262)

where N = n + 1 for any nonempty simplex in Rn. The volume of this simplex
is half that of the entire pyramid; id est,

√
c = 1

6 found by evaluating (1260).

2

With that, we conclude digression of path.

5.14.4 Affine dimension reduction in three dimensions

(confer §5.8.4) The determinant of any M ×M matrix is equal to the product of its
M eigenvalues. [348, §5.1] When N = 4 and det(ΘTΘ) is 0, that means one or more
eigenvalues of ΘTΘ∈R3×3 are 0. The determinant will go to 0 whenever equality is
attained on either side of (970), (1251a), or (1251b), meaning that a tetrahedron has
collapsed to a lower affine dimension; id est, r = rank ΘTΘ = rank Θ is reduced below
N−1 exactly by the number of 0 eigenvalues (§5.7.1.1).

In solving completion problems of any size N where one or more entries of an EDM
are unknown, therefore, dimension r of the affine hull required to contain the unknown
points is potentially reduced by selecting distances to attain equality in (970) or (1251a)
or (1251b).

http://mathworld.wolfram.com/Pyramid.html
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5.14.4.1 Exemplum redux

We now apply the fifth Euclidean metric property to an earlier problem:

5.14.4.1.1 Example. Small completion problem, IV. (confer §5.9.3.0.1)
Returning again to Example 5.3.0.0.2 that pertains to Figure 130 where N =4,
distance-square d14 is ascertainable from the fifth Euclidean metric property. Because
all distances in (968) are known except

√
d14 , then cos θ123 =0 and θ324 =0 result from

identity (1042). Applying (970),

cos(θ123 + θ324) ≤ cos θ124 ≤ cos(θ123 − θ324)
0 ≤ cos θ124 ≤ 0

(1263)

It follows again from (1042) that d14 can only be 2. As explained in this subsection, affine
dimension r cannot exceed N−2 because equality is attained in (1263). 2


