
Chapter 6

Cone of distance matrices

For N > 3, the cone of EDMs is no longer a circular cone and the geometry
becomes complicated. . .

−Hayden, Wells, Liu, & Tarazaga, 1991 [201, §3]

In the subspace of symmetric matrices SN , we know that the convex cone of Euclidean
distance matrices EDMN (the EDM cone) does not intersect the positive semidefinite cone
SN

+ (PSD cone) except at the origin, their only vertex; there can be no positive or negative
semidefinite EDM. (1187) [251]

EDMN ∩ SN
+ = 0 (1264)

Even so, the two convex cones can be related. In §6.8.1 we prove the equality

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

(1357)

a resemblance to EDM definition (976) where

SN
h =

{

A ∈ SN | δ(A) = 0
}

(66)

is the symmetric hollow subspace (§2.2.3) and where

SN⊥
c =

{

u1T+ 1uT | u∈RN
}

(2115)

is the orthogonal complement of the geometric center subspace (§E.7.2.0.2)

SN
c =

{

Y ∈ SN | Y 1 = 0
}

(2113)
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6.0.1 gravity

Equality (1357) is equally important as the known isomorphisms (1095) (1096) (1107)
(1108) relating the EDM cone EDMN to positive semidefinite cone SN−1

+ (§5.6.2.1) or to

an N(N−1)/2-dimensional face of SN
+ (§5.6.1.1).6.1 But those isomorphisms have never

led to this equality relating whole cones EDMN and SN
+ .

Equality (1357) is not obvious from the various EDM definitions such as (976) or
(1280) because inclusion must be proved algebraically in order to establish equality;

EDMN ⊇ SN
h ∩

(

SN⊥
c − SN

+

)

. We will instead prove (1357) using purely geometric

methods.

6.0.2 highlight

In §6.8.1.7 we show: the Schoenberg criterion for discriminating Euclidean distance
matrices

D ∈ EDMN ⇔
{

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

(995)

is a discretized membership relation (§2.13.4, dual generalized inequalities) between the
EDM cone and its ordinary dual.

6.1 Defining EDM cone

We invoke a popular matrix criterion to illustrate correspondence between the EDM and
PSD cones belonging to the ambient space of symmetric matrices:

D ∈ EDMN ⇔
{ −V D V ∈ SN

+

D ∈ SN
h

(999)

where V ∈ SN is the geometric centering matrix (§B.4). The set of all EDMs of dimension
N×N forms a closed convex cone EDMN because any pair of EDMs satisfies the definition
of a convex cone (175); videlicet, for each and every ζ1 , ζ2 ≥ 0 (§A.3.1.0.2)

ζ1 V D1V + ζ2 V D2V º 0

ζ1 D1 + ζ2 D2 ∈ SN
h

⇐ V D1V º 0 , V D2V º 0

D1 ∈ SN
h , D2 ∈ SN

h

(1265)

and convex cones are invariant to inverse linear transformation [325, p.22].

6.1Because both positive semidefinite cones are frequently in play, dimension is explicit.
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d12d13

d23

√
d12

√
d13

√
d23

d12d13

d23

dvec rel ∂EDM3

Figure 152: Relative boundary (tiled) of EDM cone EDM3drawn truncated in isometrically
isomorphic subspace R3. (a) EDM cone drawn in usual distance-square coordinates dij .
View is from interior toward origin. Unlike positive semidefinite cone, EDM cone is
not selfdual; neither is it proper in ambient symmetric subspace (dual EDM cone for
this example belongs to isomorphic R6). (b) Drawn in its natural coordinates

√

dij

(absolute distance), cone remains convex (confer §5.10); intersection of three halfspaces
(1150) whose partial boundaries each contain origin. Cone geometry becomes nonconvex
(nonpolyhedral) in higher dimension. (§6.3) (c) Two coordinate systems artificially
superimposed. Coordinate transformation from dij to

√

dij appears a topological

contraction. (d) Sitting on its vertex 0, pointed EDM3 is a circular cone having axis of
revolution dvec(−E)= dvec(11T− I ) (1183) (73). (Rounded vertex is plot artifact.)
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6.1.0.0.1 Definition. Cone of Euclidean distance matrices.
In the subspace of symmetric matrices, the set of all Euclidean distance matrices forms a
unique immutable pointed closed convex cone called the EDM cone: for N > 0

EDMN ,
{

D ∈ SN
h | −V D V ∈ SN

+

}

=
⋂

z∈N (1T)

{

D ∈ SN | 〈zzT,−D〉≥ 0 , δ(D)=0
} (1266)

The EDM cone in isomorphic RN(N+1)/2 [sic ] is the intersection of an infinite number
(when N >2) of halfspaces about the origin and a finite number of hyperplanes through
the origin in vectorized variable D = [dij ] . Hence EDMN is not full-dimensional with

respect to SN because it is confined to the symmetric hollow subspace SN
h . The EDM

cone relative interior comprises

rel int EDMN =
⋂

z∈N (1T)

{

D ∈ SN | 〈zzT,−D〉> 0 , δ(D)=0
}

=
{

D ∈ EDMN | rank(V D V ) = N−1
}

(1267)

while its relative boundary comprises

rel ∂EDMN =
{

D ∈ EDMN | 〈zzT,−D〉 = 0 for some z∈N (1T)
}

=
{

D ∈ EDMN | rank(V D V ) < N−1
} (1268)

△

This cone is more easily visualized in the isomorphic vector subspace RN(N−1)/2

corresponding to SN
h :

In the case N = 1 point, the EDM cone is the origin in R0.
In the case N = 2, the EDM cone is the nonnegative real line in R ; a halfline in a

subspace of the realization in Figure 156.
The EDM cone in the case N = 3 is a circular cone in R3 illustrated in

Figure 152(a)(d); rather, the set of all matrices

D =





0 d12 d13

d12 0 d23

d13 d23 0



 ∈ EDM3 (1269)

makes a circular cone in this dimension. In this case, the first four Euclidean metric
properties are necessary and sufficient tests to certify realizability of triangles; (1245).
Thus triangle inequality property 4 describes three halfspaces (1150) whose intersection
makes a polyhedral cone in R3 of realizable

√

dij (absolute distance); an isomorphic
subspace representation of the set of all EDMs D in the natural coordinates

◦
√

D ,





0
√

d12

√
d13√

d12 0
√

d23√
d13

√
d23 0



 (1270)

illustrated in Figure 152b.
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6.2 Polyhedral bounds

The convex cone of EDMs is nonpolyhedral in dij for N > 2 ; e.g, Figure 152a. Still we
found necessary and sufficient bounding polyhedral relations consistent with EDM cones
for cardinality N = 1, 2, 3, 4:

N = 3. Transforming distance-square coordinates dij by taking their positive square root
provides the polyhedral cone in Figure 152b; polyhedral because an intersection
of three halfspaces in natural coordinates

√

dij is provided by triangle inequalities
(1150). This polyhedral cone implicitly encompasses necessary and sufficient metric
properties: nonnegativity, selfdistance, symmetry, and triangle inequality.

N = 4. Relative-angle inequality (1251) together with four Euclidean metric properties are
necessary and sufficient tests for realizability of tetrahedra. (1252) Albeit relative
angles θikj (1042) are nonlinear functions of the dij , relative-angle inequality
provides a regular tetrahedron in R3 [sic ] (Figure 150) bounding angles θikj at
vertex xk consistently with EDM4 .6.2

Yet were we to employ the procedure outlined in §5.14.3 for making generalized triangle
inequalities, then we would find all the necessary and sufficient dij -transformations for
generating bounding polyhedra consistent with EDMs of any higher dimension (N > 3).

6.3
√

EDM cone is not convex

For some applications, like a molecular conformation problem (Figure 5, Figure 141) or
multidimensional scaling [109] [373], absolute distance

√

dij is the preferred variable.
Taking square root of the entries in all EDMs D of dimension N , we get another cone
but not a convex cone when N > 3 (Figure 152b): [93, §4.5.2]

√

EDMN , { ◦
√

D | D∈EDMN} (1271)

where ◦
√

D is defined like (1270). It is a cone simply because any cone
is completely constituted by rays emanating from the origin: (§2.7) Any

given ray {ζ Γ∈RN(N−1)/2 | ζ≥0} remains a ray under entrywise square root:

{ ◦
√

ζ Γ∈RN(N−1)/2 | ζ≥0}. It is already established that

D∈EDMN ⇒ ◦
√

D ∈ EDMN (1182)

But because of how
√

EDMN is defined, it is obvious that (confer §5.10)

D∈EDMN ⇔ ◦
√

D∈
√

EDMN (1272)

Were
√

EDMN convex, then given ◦
√

D1 , ◦
√

D2 ∈
√

EDMN we would expect their conic

combination ◦
√

D1 + ◦
√

D2 to be a member of
√

EDMN . That is easily proven false by

6.2Still, property-4 triangle inequalities (1150) corresponding to each principal 3×3 submatrix of
−V T

NDVN demand that the corresponding
√

dij belong to a polyhedral cone like that in Figure 152b.
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counterexample via (1272), for then ( ◦
√

D1 + ◦
√

D2 )◦ ( ◦
√

D1 + ◦
√

D2 ) would need to be a
member of EDMN .

Notwithstanding,
√

EDMN ⊆ EDMN (1273)

by (1182) (Figure 152), and we learn how to transform a nonconvex proximity problem in
the natural coordinates

√

dij to a convex optimization in §7.2.1.

6.4 EDM definition in 11T

Any EDM D corresponding to affine dimension r has representation

D(VX ) , δ(VXV T
X )1T + 1δ(VXV T

X )T − 2VXV T
X ∈ EDMN (1274)

where R(VX ∈RN×r)⊆ N (1T) = 1⊥

V T
X VX = δ2(V T

X VX ) and VX is full-rank with orthogonal columns. (1275)

Equation (1274) is simply the standard EDM definition (976) with a centered list X as
in (1063); Gram matrix XTX has been replaced with the subcompact singular value
decomposition (§A.6.2)6.3

VXV T
X ≡ V TXTXV ∈ SN

c ∩ SN
+ (1276)

This means: inner product V T
X VX is an r×r diagonal matrix Σ of nonzero singular

values.
Vector δ(VXV T

X ) may me decomposed into complementary parts by projecting it on
orthogonal subspaces 1⊥ and R(1) : namely,

P1⊥

(

δ(VXV T
X )

)

= V δ(VXV T
X ) (1277)

P1

(

δ(VXV T
X )

)

=
1

N
11Tδ(VXV T

X ) (1278)

Of course

δ(VXV T
X ) = V δ(VXV T

X ) +
1

N
11Tδ(VXV T

X ) (1279)

by (998). Substituting this into EDM definition (1274), we get the Hayden, Wells, Liu, &
Tarazaga EDM formula [201, §2]

D(VX , y) , y1T + 1yT +
λ

N
11T − 2VXV T

X ∈ EDMN (1280)

where

λ , 2‖VX ‖2
F = 1Tδ(VXV T

X )2 and y , δ(VXV T
X ) − λ

2N
1 = V δ(VXV T

X ) (1281)

6.3Subcompact SVD: VXV T
X , Q

√
Σ
√

ΣQT≡ V TXTXV . So V T
X is not necessarily XV (§5.5.1.0.1),

although affine dimension r = rank(V T
X ) = rank(XV ). (1120)
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and y=0 if and only if 1 is an eigenvector of EDM D . Scalar λ becomes an eigenvalue
when corresponding eigenvector 1 exists.6.4

Then the particular dyad sum from (1280)

y1T+ 1yT+
λ

N
11T ∈ SN⊥

c (1282)

must belong to the orthogonal complement of the geometric center subspace (p.632),
whereas VXV T

X ∈ SN
c ∩ SN

+ (1276) belongs to the positive semidefinite cone in the
geometric center subspace.

Proof. We validate eigenvector 1 and eigenvalue λ .
(⇒) Suppose 1 is an eigenvector of EDM D . Then because

V T
X 1 = 0 (1283)

it follows

D1 = δ(VXV T
X )1T1 + 1δ(VXV T

X )T1 = N δ(VXV T
X ) + ‖VX ‖2

F1

⇒ δ(VXV T
X ) ∝ 1

(1284)

For some κ∈R+

δ(VXV T
X )T1 = N κ = tr(V T

X VX ) = ‖VX ‖2
F ⇒ δ(VXV T

X ) =
1

N
‖VX ‖2

F1 (1285)

so y=0.

(⇐) Now suppose δ(VXV T
X )=

λ

2N
1 ; id est, y=0. Then

D =
λ

N
11T− 2VXV T

X ∈ EDMN (1286)

1 is an eigenvector with corresponding eigenvalue λ . ¨

6.4.1 Range of EDM D

From §B.1.1 pertaining to linear independence of dyad sums: If the transpose halves of
all the dyads in the sum (1274)6.5 make a linearly independent set, then the nontranspose
halves constitute a basis for the range of EDM D . Saying this mathematically: For
D∈EDMN

R(D)= R([ δ(VXV T
X ) 1 VX ]) ⇐ rank([ δ(VXV T

X ) 1 VX ])= 2 + r

R(D)= R([1 VX ]) ⇐ otherwise
(1287)

6.4 e.g, when X = I in EDM definition (976).
6.5Identifying columns VX , [ v1 · · · vr ] , then VXV T

X =
∑

i
viv

T
i is also a sum of dyads.
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VX

N (1T)

1

δ(VXV T
X )

Figure 153: Example of VX selection to make an EDM corresponding to cardinality N = 3
and affine dimension r = 1 ; VX is a vector in nullspace N (1T)⊂ R3. Nullspace of 1T is
hyperplane in R3 (drawn truncated) having normal 1. Vector δ(VXV T

X ) may or may not
be in plane spanned by {1 , VX } , but belongs to nonnegative orthant which is strictly
supported by N (1T).
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6.4.1.0.1 Proof. We need that condition under which the rank equality is satisfied:
We know R(VX )⊥1, but what is the relative geometric orientation of δ(VXV T

X ) ?
δ(VXV T

X )º 0 because VXV T
X º 0, and δ(VXV T

X )∝1 remains possible (1284); this means
δ(VXV T

X ) /∈ N (1T) simply because it has no negative entries. (Figure 153) If the projection
of δ(VXV T

X ) on N (1T) does not belong to R(VX ) , then that is a necessary and sufficient
condition for linear independence (l.i.) of δ(VXV T

X ) with respect to R([1 VX ]) ; id est,

V δ(VXV T
X ) 6= VX a for any a∈Rr

(I − 1
N 11T)δ(VXV T

X ) 6= VX a

δ(VXV T
X ) − 1

N ‖VX ‖2
F1 6= VX a

δ(VXV T
X ) − λ

2N 1 = y 6= VX a ⇔ {1 , δ(VXV T
X ) , VX } is l.i.

(1288)

When this condition is violated (when (1281) y=VX ap for some particular a∈Rr), on
the other hand, then from (1280) we have

R
(

D = y1T+ 1yT+ λ
N 11T− 2VXV T

X
)

= R
(

(VX ap + λ
N 1)1T+ (1aT

p − 2VX )V T
X

)

= R([VX ap + λ
N 1 1aT

p − 2VX ])

= R([1 VX ])

(1289)

An example of such a violation is (1286) where, in particular, ap = 0. ¨

Then a statement parallel to (1287) is, for D∈EDMN (Theorem 5.7.3.0.1)

rank(D) = r + 2 ⇔ y /∈R(VX )
(

⇔ 1TD†1 = 0
)

rank(D) = r + 1 ⇔ y∈R(VX )
(

⇔ 1TD†1 6= 0
) (1290)

6.4.2 Boundary constituents of EDM cone

Expression (1274) has utility in forming the set of all EDMs corresponding to affine
dimension r :

{

D∈EDMN | rank(V D V )= r
}

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆ N (1T)
} (1291)

whereas {D∈EDMN | rank(V D V )≤ r} is the closure of this same set;

{

D∈EDMN | rank(V D V )≤ r
}

=
{

D∈EDMN | rank(V D V )= r
}

(1292)

For example,

rel ∂EDMN =
{

D∈EDMN | rank(V D V )< N−1
}

=
N−2
⋃

r=0

{

D∈EDMN | rank(V D V )= r
} (1293)
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-1
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-1

0

1

-1

0

1

-1

0

1

-1

0

1

VX ∈R3×1
տ

(a)

(b)

dvecD(VX ) ⊂ dvec rel ∂EDM3
←−

Figure 154: (a) Vector VX from Figure 153 spirals in N (1T)⊂R3 decaying toward origin.
(Spiral is two-dimensional in vector space R3.) (b) Corresponding trajectory D(VX ) on
EDM cone relative boundary creates a vortex also decaying toward origin. There are two
complete orbits on EDM cone boundary about axis of revolution for every single revolution
of VX about origin. (Vortex is three-dimensional in isometrically isomorphic R3.)
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None of these are necessarily convex sets, although

EDMN =
N−1
⋃

r=0

{

D∈EDMN | rank(V D V )= r
}

=
{

D∈EDMN | rank(V D V )= N−1
}

rel int EDMN =
{

D∈EDMN | rank(V D V )= N−1
}

(1294)

are pointed convex cones.
When cardinality N = 3 and affine dimension r = 2, for example, the relative interior

rel int EDM3 is realized via (1291). (§6.5)
When N = 3 and r = 1, the relative boundary of the EDM cone dvec rel ∂EDM3 is

realized in isomorphic R3 as in Figure 152d. This figure could be constructed via (1292)
by spiraling vector VX tightly about the origin in N (1T) ; as can be imagined with aid of
Figure 153. Vectors close to the origin in N (1T) are correspondingly close to the origin
in EDMN . As vector VX orbits the origin in N (1T) , the corresponding EDM orbits the
axis of revolution while remaining on the boundary of the circular cone dvec rel ∂EDM3.
(Figure 154)

6.4.3 Faces of EDM cone

Like the positive semidefinite cone, EDM cone faces are EDM cones.

6.4.3.0.1 Exercise. Isomorphic faces.
Prove that in high cardinality N , any set of EDMs made via (1291) or (1292) with
particular affine dimension r is isomorphic with any set admitting the same affine
dimension but made in lower cardinality. H

6.4.3.1 smallest face that contains an EDM

Now suppose we are given a particular EDM D(VXp
)∈EDMN corresponding to affine

dimension r and parametrized by VXp
in (1274). The EDM cone’s smallest face that

contains D(VXp
) is

F
(

EDMN ∋D(VXp
)
)

=
{

D(VX ) | VX ∈RN×r, rankVX = r , V T
X VX = δ2(V T

X VX ) , R(VX )⊆R(VXp
)
}

≃ EDMr+1

(1295)

which is isomorphic6.6 with convex cone EDMr+1, hence of dimension

dimF
(

EDMN ∋D(VXp
)
)

= (r + 1)r/2 (1296)

6.6The fact that the smallest face is isomorphic with another EDM cone (perhaps smaller than EDM
N )

is implicit in [201, §2].
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in isomorphic RN(N−1)/2. Not all dimensions are represented; e.g, the EDM cone has no
two-dimensional faces.

When cardinality N = 4 and affine dimension r=2 so that R(VXp
) is any

two-dimensional subspace of three-dimensional N (1T) in R4, for example, then the
corresponding face of EDM4 is isometrically isomorphic with: (1292)

EDM3 = {D∈EDM3 | rank(V D V )≤ 2} ≃ F(EDM4∋D(VXp
)) (1297)

Each two-dimensional subspace of N (1T) corresponds to another three-dimensional face.
Because each and every principal submatrix of an EDM in EDMN (§5.14.3) is another

EDM [251, §4.1], for example, then each principal submatrix belongs to a particular face
of EDMN .

6.4.3.2 extreme directions of EDM cone

In particular, extreme directions (§2.8.1) of EDMN correspond to affine dimension r = 1
and are simply represented: for any particular cardinality N ≥ 2 (§2.8.2) and each and
every nonzero vector z in N (1T)

Γ , (z ◦ z)1T + 1(z ◦ z)T − 2zzT ∈ EDMN

= δ(zzT)1T + 1δ(zzT)T − 2zzT
(1298)

is an extreme direction corresponding to a one-dimensional face of the EDM cone EDMN

that is a ray in isomorphic subspace RN(N−1)/2.

Proving this would exercise the fundamental definition (186) of extreme
direction. Here is a sketch: Any EDM may be represented

D(VX ) = δ(VXV T
X )1T + 1δ(VXV T

X )T − 2VXV T
X ∈ EDMN (1274)

where matrix VX (1275) has orthogonal columns. For the same reason (1556)
that zzT is an extreme direction of the positive semidefinite cone (§2.9.2.7)
for any particular nonzero vector z , there is no conic combination of distinct
EDMs (each conically independent of Γ (§2.10)) equal to Γ . ¥

6.4.3.2.1 Example. Biorthogonal expansion of an EDM. (confer §2.13.7.1.1)
When matrix D belongs to the EDM cone, nonnegative coordinates for biorthogonal
expansion are the eigenvalues λ∈RN of −V D V 1

2 : For any D∈ SN
h it holds

D = δ
(

−V D V 1
2

)

1T + 1δ
(

−V D V 1
2

)T − 2
(

−V D V 1
2

)

(1087)

By diagonalization −V D V 1
2 , QΛQT∈ SN

c (§A.5.1) we may write

D = δ

(

N
∑

i=1

λi qiq
T
i

)

1T + 1δ

(

N
∑

i=1

λi qiq
T
i

)T

− 2
N
∑

i=1

λi qiq
T
i

=
N
∑

i=1

λi

(

δ(qiq
T
i )1T + 1δ(qiq

T
i )T − 2qiq

T
i

)

(1299)
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where qi is the ith eigenvector of −V D V 1
2 arranged columnar in orthogonal matrix

Q = [ q1 q2 · · · qN ] ∈ RN×N (399)

and where {δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i , i=1 . . . N} are extreme directions of some

pointed polyhedral cone K⊂ SN
h and extreme directions of EDMN . Invertibility of (1299)

−V D V 1
2 = −V

N
∑

i=1

λi

(

δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i

)

V 1
2

=
N
∑

i=1

λi qiq
T
i

(1300)

implies linear independence of those extreme directions. Then biorthogonal expansion is
expressed

dvec D = Y Y † dvec D = Y λ
(

−V D V 1
2

)

(1301)
where

Y ,
[

dvec
(

δ(qiq
T
i )1T+ 1δ(qiq

T
i )T− 2qiq

T
i

)

, i = 1 . . . N
]

∈ RN(N−1)/2×N (1302)

When D belongs to the EDM cone in the subspace of symmetric hollow matrices,
unique coordinates Y † dvec D for this biorthogonal expansion must be the nonnegative
eigenvalues λ of −V D V 1

2 . This means D simultaneously belongs to the EDM cone and
to the pointed polyhedral cone dvecK= cone(Y ). 2

6.4.3.3 open question

Result (1296) is analogous to that for the positive semidefinite cone (222), although the
question remains open whether all faces of EDMN (whose dimension is less than dimension
of the cone) are exposed like they are for the positive semidefinite cone.6.7 (§2.9.2.3) [365]

6.5 Correspondence to PSD cone SN−1
+

Hayden, Wells, Liu, & Tarazaga [201, §2] assert one-to-one correspondence of EDMs with
positive semidefinite matrices in the symmetric subspace. Because rank(V D V )≤N−1
(§5.7.1.1), that PSD cone corresponding to the EDM cone can only be SN−1

+ . [9, §18.2.1]
To clearly demonstrate this correspondence, we invoke inner-product form EDM definition

D(Φ) =

[

0
δ(Φ)

]

1T + 1
[

0 δ(Φ)T
]

− 2

[

0 0T

0 Φ

]

∈ EDMN

⇔
Φ º 0

(1105)

Then the EDM cone may be expressed

EDMN =
{

D(Φ) | Φ ∈ SN−1
+

}

(1303)

6.7Elementary example of face not exposed is given by the closed convex set in Figure 35 and in
Figure 45.
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Hayden & Wells’ assertion can therefore be equivalently stated in terms of an
inner-product form EDM operator

D(SN−1
+ ) = EDMN (1107)

VN (EDMN ) = SN−1
+ (1108)

identity (1108) holding because R(VN )=N (1T) (983), linear functions D(Φ) and
VN (D)=−V T

NDVN (§5.6.2.1) being mutually inverse.
In terms of affine dimension r , Hayden & Wells claim particular correspondence

between PSD and EDM cones:

r = N−1: Symmetric hollow matrices −D positive definite on N (1T) correspond to points
relatively interior to the EDM cone.

r < N−1: Symmetric hollow matrices −D positive semidefinite on N (1T) , where −V T
NDVN

has at least one 0 eigenvalue, correspond to points on the relative boundary of the
EDM cone.

r = 1: Symmetric hollow nonnegative matrices rank-one on N (1T) correspond to extreme
directions (1298) of the EDM cone; id est, for some nonzero vector u (§A.3.1.0.7)

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇔ D ∈ EDMN

D is an extreme direction
⇔

{

−V T
NDVN ≡ uuT

D ∈ SN
h

(1304)

6.5.0.0.1 Proof. Case r = 1 is easily proved: From the nonnegativity development
in §5.8.1, extreme direction (1298), and Schoenberg criterion (995), we need show only
sufficiency; id est, prove

rankV T
NDVN =1

D ∈ SN
h ∩ RN×N

+

}

⇒ D ∈ EDMN

D is an extreme direction

Any symmetric matrix D satisfying the rank condition must have the form, for z,q∈RN

and nonzero z∈N (1T) ,
D = ±(1qT+ q1T− 2zzT) (1305)

because (§5.6.2.1, confer §E.7.2.0.2)

N (VN (D)) = {1qT+ q1T | q∈RN} ⊆ SN (1306)

Hollowness demands q = δ(zzT) while nonnegativity demands choice of positive sign in
(1305). Matrix D thus takes the form of an extreme direction (1298) of the EDM cone.

¨

The foregoing proof is not extensible in rank: An EDM with corresponding affine
dimension r has the general form, for {zi∈N (1T) , i=1 . . . r} an independent set,

D = 1δ

(

r
∑

i=1

ziz
T
i

)T

+ δ

(

r
∑

i=1

ziz
T
i

)

1T− 2
r
∑

i=1

ziz
T
i ∈ EDMN (1307)
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The EDM so defined relies principally on the sum
∑

ziz
T
i having positive summand

coefficients (⇔ −V T
NDVN º 0)6.8. Then it is easy to find a sum incorporating negative

coefficients while meeting rank, nonnegativity, and symmetric hollowness conditions but
not positive semidefiniteness on subspace R(VN ) ; e.g, from page 418,

−V





0 1 1
1 0 5
1 5 0



V
1

2
= z1z

T
1 − z2z

T
2 (1308)

6.5.0.0.2 Example. Extreme rays versus rays on the boundary.

The EDM D =





0 1 4
1 0 1
4 1 0



 is an extreme direction of EDM3 where u =

[

1
2

]

in (1304).

Because −V T
NDVN has eigenvalues {0, 5} , the ray whose direction is D also lies on the

relative boundary of EDM3.

In exception, EDM D = κ

[

0 1
1 0

]

, for any particular κ > 0, is an extreme direction

of EDM2 but −V T
NDVN has only one eigenvalue: {κ}. Because EDM2 is a ray whose

relative boundary (§2.6.1.4.1) is the origin, this conventional boundary does not include
D which belongs to the relative interior in this dimension. (§2.7.0.0.1) 2

6.5.1 Gram-form correspondence to SN−1
+

With respect to D(G)= δ(G)1T+ 1δ(G)T− 2G (988) the linear Gram-form EDM
operator, results in §5.6.1 provide [3, §2.6]

EDMN = D
(

V(EDMN )
)

≡ D
(

VN SN−1
+ V T

N
)

(1309)

VN SN−1
+ V T

N ≡ V
(

D
(

VN SN−1
+ V T

N
))

= V(EDMN ) , −V EDMN V 1
2 = SN

c ∩ SN
+ (1310)

a one-to-one correspondence between EDMN and SN−1
+ .

6.5.2 EDM cone by elliptope

Having defined the elliptope parametrized by scalar t>0

EN
t = SN

+ ∩ {Φ∈ SN | δ(Φ)= t1} (1185)

then following Alfakih [10] we have

EDMN = cone{11T− EN
1 } = {t(11T− EN

1 ) | t ≥ 0} (1311)

Identification EN = EN
1 equates the standard elliptope (§5.9.1.0.1, Figure 144) to our

parametrized elliptope.

6.8 (⇐) For ai∈R
N−1, let zi = V †T

N ai .
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dvec rel ∂ EDM3

dvec(11T− E3)

EDMN = cone{11T− EN} = {t(11T− EN ) | t ≥ 0} (1311)

Figure 155: Three views of translated negated elliptope 11T− E3
1 (confer Figure 144)

shrouded by truncated EDM cone. Fractal on EDM cone relative boundary is numerical
artifact belonging to intersection with elliptope relative boundary. The fractal is trying
to convey existence of a neighborhood about the origin where the translated elliptope
boundary and EDM cone boundary intersect.
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6.5.2.0.1 Expository. Normal cone, tangent cone, elliptope.
Define TE(11T) to be the tangent cone to the elliptope E at point 11T ; id est,

TE(11T) , {t(E − 11T) | t≥ 0} (1312)

The normal cone K⊥
E (11T) to the elliptope at 11T is a closed convex cone defined

(§E.10.3.2.1, Figure 191)

K⊥
E (11T) , {B | 〈B , Φ − 11T〉 ≤ 0 , Φ∈E} (1313)

The polar cone of any set K is the closed convex cone (confer (296))

K◦ , {B | 〈B , A〉≤ 0 , for all A∈K} (1314)

The normal cone is well known to be the polar of the tangent cone,

K⊥
E (11T) = TE(11T)

◦
(1315)

and vice versa; [215, §A.5.2.4]

K⊥
E (11T)

◦
= TE(11T) (1316)

From Deza & Laurent [120, p.535] we have the EDM cone

EDM = −TE(11T) (1317)

The polar EDM cone is also expressible in terms of the elliptope. From (1315) we have

EDM◦ = −K⊥
E (11T) (1318)

⋆

In §5.10.1 we proposed the expression for EDM D

D = t11T− E ∈ EDMN (1186)

where t∈R+ and E belongs to the parametrized elliptope EN
t . We further propose, for

any particular t>0

EDMN = cone{t11T− EN
t } (1319)

Proof (pending). ¥

6.5.2.0.2 Exercise. EDM cone from elliptope.
Relationship of the translated negated elliptope with the EDM cone is illustrated in
Figure 155. Prove whether it holds that

EDMN = lim
t→∞

t11T− EN
t (1320)

H
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6.6 Vectorization & projection interpretation

In §E.7.2.0.2 we learn: −V D V can be interpreted as orthogonal projection [7, §2] of
vectorized −D∈ SN

h on the subspace of geometrically centered symmetric matrices

SN
c = {G∈ SN | G1 = 0}

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN

≡ {VNAV T
N | A∈ SN−1}

(1078)

because elementary auxiliary matrix V is an orthogonal projector (§B.4.1). Yet there is
another useful projection interpretation:

Revising the fundamental matrix criterion for membership to the EDM cone (971),6.9

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1321)

this is equivalent, of course, to the Schoenberg criterion

−V T
NDVN º 0

D ∈ SN
h

}

⇔ D ∈ EDMN (995)

because N (11T)=R(VN ). When D∈EDMN , correspondence (1321) means −zTDz is
proportional to a nonnegative coefficient of orthogonal projection (§E.6.4.2, Figure 157)

of −D in isometrically isomorphic RN(N+1)/2 on the range of each and every vectorized
(§2.2.2.1) symmetric dyad (§B.1) in the nullspace of 11T ; id est, on each and every
member of

T ,
{

svec(zzT) | z∈N (11T)=R(VN )
}

⊂ svec ∂ SN
+

=
{

svec(VN υυTV T
N ) | υ∈RN−1

} (1322)

whose dimension is
dim T = N(N − 1)/2 (1323)

The set of all symmetric dyads {zzT | z∈RN} constitute the extreme directions of the
positive semidefinite cone (§2.8.1, §2.9) SN

+ , hence lie on its boundary. Yet only those
dyads in R(VN ) are included in the test (1321), thus only a subset T of all vectorized
extreme directions of SN

+ is observed.

In the particularly simple case D∈EDM2 = {D∈ S2

h | d12 ≥ 0} , for example, only one
extreme direction of the PSD cone is involved:

zzT =

[

1 −1
−1 1

]

(1324)

Any nonnegative scaling of vectorized zzT belongs to the set T illustrated in Figure 156
and Figure 157.

6.9 N (11T)=N (1T) and R(zzT)=R(z)
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d11

√
2d12

d22
svec EDM2

0

−T

svec ∂ S2

+

[

d11 d12

d12 d22

]

T ,

{

svec(zzT) | z∈N (11T)= κ

[

1
−1

]

, κ∈R

}

⊂ svec ∂ S2

+

Figure 156: Truncated boundary of positive semidefinite cone S2

+ in isometrically

isomorphic R3 (via svec (56)) is, in this dimension, constituted solely by its extreme
directions. Truncated cone of Euclidean distance matrices EDM2 in isometrically
isomorphic subspace R . Relative boundary of EDM cone is constituted solely by matrix 0.
Halfline T = {κ2[ 1 −

√
2 1 ]T | κ∈R} on PSD cone boundary depicts that lone extreme

ray (1324) on which orthogonal projection of −D must be positive semidefinite if D is to
belong to EDM2. aff cone T = svec S2

c . (1329) Dual EDM cone is halfspace in R3 whose
bounding hyperplane has inward-normal svec EDM2.
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d11

√
2d12

d22
svec S2

h

0

−T

svec ∂ S2

+

[

d11 d12

d12 d22

]

D

−D

Psvec zzT(svec(−D)) =
〈zzT, −D〉
〈zzT, zzT〉 zzT is projection of vectorized −D on range of vectorized zzT.

D ∈ EDMN ⇔
{

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

(1321)

Figure 157: Given-matrix D is assumed to belong to symmetric hollow subspace S2

h ; a
line in this dimension. Negative D is found along S2

h . Set T (1322) has only one ray
member in this dimension; not orthogonal to S2

h . Orthogonal projection of −D on T
(indicated by half dot) has nonnegative projection coefficient. Matrix D must therefore
be an EDM.
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6.6.1 Face of PSD cone SN
+ containing V

In any case, set T (1322) constitutes the vectorized extreme directions of an
N(N−1)/2-dimensional face of the PSD cone SN

+ containing auxiliary matrix V ; a face

isomorphic with SN−1
+ = Srank V

+ (§2.9.2.3).

To show this, we must first find the smallest face that contains auxiliary matrix
V and then determine its extreme directions. From (221),

F
(

SN
+ ∋V

)

= {W ∈ SN
+ | N (W ) ⊇ N (V )} = {W ∈ SN

+ | N (W ) ⊇ 1}
= {V Y V º 0 | Y ∈ SN} ≡ {VNBV T

N | B∈ SN−1
+ }

≃ Srank V
+ = −V T

N EDMN VN

(1325)

where the equivalence ≡ is from §5.6.1 while isomorphic equality ≃ with
transformed EDM cone is from (1108). Projector V belongs to F(SN

+ ∋V )

because VNV †
NV †T

N V T
N = V (§B.4.3). Each and every rank-one matrix

belonging to this face is therefore of the form:

VN υυTV T
N | υ∈RN−1 (1326)

Because F(SN
+ ∋V ) is isomorphic with a positive semidefinite cone SN−1

+ , then
T constitutes the vectorized extreme directions of F , the origin constitutes
the extreme points of F , and auxiliary matrix V is some convex combination
of those extreme points and directions by the extremes theorem (§2.8.1.1.1).

¨

In fact the smallest face, that contains auxiliary matrix V , of the PSD cone SN
+ is the

intersection with the geometric center subspace (2113) (2114);

F
(

SN
+ ∋V

)

= cone
{

VN υυTV T
N | υ∈RN−1

}

= SN
c ∩ SN

+

≡ {Xº 0 | 〈X , 11T〉 = 0} (1684)

(1327)

In isometrically isomorphic RN(N+1)/2

svecF
(

SN
+ ∋V

)

= cone T (1328)

related to SN
c by

aff cone T = svec SN
c (1329)

6.6.2 EDM criteria in 11T

(confer §6.4, (1002)) Laurent specifies an elliptope trajectory condition for EDM cone
membership: [251, §2.3]

D ∈ EDMN ⇔ [1 − e−αdij ] ∈ EDMN ∀α > 0 (1180a)
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From the parametrized elliptope EN
t in §6.5.2 and §5.10.1 we propose

D∈EDMN ⇔ ∃ t∈R+

E∈EN
t

}

Ä D = t11T− E (1330)

Chabrillac & Crouzeix [77, §4] prove a different criterion they attribute to Finsler, 1937
[156]. We apply it to EDMs: for D∈ SN

h (1128)

−V T
NDVN ≻ 0 ⇔ ∃κ>0 Ä −D + κ11T≻ 0

⇔
D∈EDMN with corresponding affine dimension r=N−1

(1331)

This Finsler criterion has geometric interpretation in terms of the vectorization &
projection already discussed in connection with (1321). With reference to Figure 156, the
offset 11T is simply a direction orthogonal to T in isomorphic R3. Intuitively, translation
of −D in direction 11T is like orthogonal projection on T insofar as similar information
can be obtained.

When the Finsler criterion (1331) is applied despite lower affine dimension, the
constant κ can go to infinity making the test −D + κ11Tº 0 impractical for numerical
computation. Chabrillac & Crouzeix invent a criterion for the semidefinite case, but is no
more practical: for D∈ SN

h

D∈EDMN

⇔
∃κp > 0 Ä ∀κ≥κp , −D − κ11T [sic ] has exactly one negative eigenvalue

(1332)

6.7 A geometry of completion

It is not known how to proceed if one wishes to restrict the dimension of the
Euclidean space in which the configuration of points may be constructed.

−Michael W. Trosset, 2000 [371, §1]

Given an incomplete noiseless EDM, intriguing is the question of whether a list in
X∈ Rn×N (76) may be reconstructed and under what circumstances reconstruction is
unique. [3] [5] [6] [7] [9] [18] [70] [221] [233] [250] [251] [252]

If one or more entries of a particular EDM are fixed, then geometric interpretation of
the feasible set of completions is the intersection of the EDM cone EDMN in isomorphic
subspace RN(N−1)/2 with as many hyperplanes as there are fixed symmetric entries.6.10

Assuming a nonempty intersection, then the number of completions is generally infinite,
and those corresponding to particular affine dimension r<N− 1 belong to some generally
nonconvex subset of that intersection (confer §2.9.2.9.2) that can be as small as a point.

6.10Depicted in Figure 158a is an intersection of the EDM cone EDM
3 with a single hyperplane

representing the set of all EDMs having one fixed symmetric entry. This representation is practical
because it is easily combined with or replaced by other convex constraints; e.g, slab inequalities in (789)
that admit bounding of noise processes.
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∂H

dvec rel ∂EDM3

0

(b) (c)

(a)

Figure 158: (a) In isometrically isomorphic subspace R3, intersection of EDM3 with
hyperplane ∂H representing one fixed symmetric entry d23 =κ (both drawn truncated,
rounded vertex is artifact of plot). EDMs in this dimension corresponding to affine
dimension 1 comprise relative boundary of EDM cone (§6.5). Since intersection illustrated
includes a nontrivial subset of cone’s relative boundary, then it is apparent there
exist infinitely many EDM completions corresponding to affine dimension 1. In this
dimension it is impossible to represent a unique nonzero completion corresponding to affine
dimension 1, for example, using a single hyperplane because any hyperplane supporting
relative boundary at a particular point Γ contains an entire ray {ζ Γ | ζ≥0} belonging to
rel ∂EDM3 by Lemma 2.8.0.0.1. (b) d13 =κ . (c) d12 =κ .
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(a)

(b)

two nearest neighbors

three nearest neighbors

Figure 159: One dimensionless EDM subgraph completion (solid) superimposed on (but
not obscuring) neighborhood graph (dashed). Local view of a few dense samples # from
relative interior of some arbitrary Euclidean manifold whose affine dimension appears
two-dimensional in this neighborhood. All line segments measure absolute distance.
Dashed line segments help visually locate nearest neighbors; suggesting, best number of
nearest neighbors can be greater than value of embedding dimension after topological
transformation (confer [228, §2]). Solid line segments represent completion of EDM
subgraph from available distance data for an arbitrarily chosen sample and its nearest
neighbors. Each distance from EDM subgraph becomes distance-square in corresponding
EDM submatrix.
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6.7.0.0.1 Example. Maximum variance unfolding. [411]
A process minimizing affine dimension (§2.1.5) of certain kinds of Euclidean manifold
by topological transformation can be posed as a completion problem (confer §E.10.2.1.2).
Weinberger & Saul, who originated the technique, specify an applicable manifold in three
dimensions by analogy to an ordinary sheet of paper (confer §2.1.6); imagine, we find it
deformed from flatness in some way introducing neither holes, tears, or selfintersections.
[411, §2.2] The physical process is intuitively described as unfurling, unfolding, diffusing,
decompacting, or unraveling. In particular instances, the process is a sort of flattening by
stretching until taut (but not by crushing); e.g, unfurling a three-dimensional Euclidean
body resembling a billowy national flag reduces that manifold’s affine dimension to r=2.

Data input to the proposed process originates from distances between neighboring
relatively dense samples of a given manifold. Figure 159 realizes a densely sampled
neighborhood; called, neighborhood graph. Essentially, the algorithmic process preserves
local isometry between nearest neighbors allowing distant neighbors to excurse expansively
by “maximizing variance” (Figure 7). The common number of nearest neighbors to each
sample is a data-dependent algorithmic parameter whose minimum value connects the
graph. The dimensionless EDM subgraph between each sample and its nearest neighbors is
completed from available data and included as input; one such EDM subgraph completion
is drawn superimposed upon the neighborhood graph in Figure 159 .6.11 The consequent
dimensionless EDM graph comprising all the subgraphs is incomplete, in general, because
the neighbor number is relatively small; incomplete even though it is a superset of the
neighborhood graph. Remaining distances (those not graphed at all) are squared then
made variables within the algorithm; it is this variability that admits unfurling.

To demonstrate, consider untying the trefoil knot drawn in Figure 160a. A
corresponding EDM D = [dij , i , j =1 . . . N ] employing only two nearest neighbors is
banded having the incomplete form

D =







































0 ď12 ď13 ? · · · ? ď1,N−1 ď1N

ď12 0 ď23 ď24
. . . ? ? ď2N

ď13 ď23 0 ď34
. . . ? ? ?

? ď24 ď34 0
. . .

. . . ? ?
...

. . .
. . .

. . .
. . .

. . .
. . . ?

? ? ?
. . .

. . . 0 ďN−2,N−1 ďN−2,N

ď1,N−1 ? ? ?
. . . ďN−2,N−1 0 ďN−1,N

ď1N ď2N ? ? ? ďN−2,N ďN−1,N 0







































(1333)

where ďij denotes a given fixed distance-square. The unfurling algorithm can be expressed

6.11Local reconstruction of point position, from the EDM submatrix corresponding to a complete
dimensionless EDM subgraph, is unique to within an isometry (§5.6, §5.12).
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(a)

(b)

Figure 160: (a) Trefoil knot in R3 from Weinberger & Saul [411]. (b) Topological
transformation algorithm employing four nearest neighbors and N = 539 samples reduces
affine dimension of knot to r=2. Choosing instead two nearest neighbors would make
this embedding more circular.
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as an optimization problem; constrained total distance-square maximization:

maximize
D

〈−V , D〉
subject to 〈D , eie

T
j + ej e

T
i 〉 1

2 = ďij ∀(i , j)∈ I
rank(V D V ) = 2

D ∈ EDMN

(1334)

where ei∈RN is the ith member of the standard basis, where set I indexes the given
distance-square data like that in (1333), where V ∈RN×N is the geometric centering
matrix (§B.4.1), and where

〈−V , D〉 = tr(−V D V ) = 2 trG =
1

N

∑

i,j

dij (1000)

where G is the Gram matrix producing D assuming G1 = 0.

If the (rank) constraint on affine dimension is ignored, then problem (1334) becomes
convex, a corresponding solution D⋆ can be found, and a nearest rank-2 solution is then had
by ordered eigenvalue decomposition of −V D⋆V followed by spectral projection (§7.1.3)

on

[

R2

+

0

]

⊂ RN . This two-step process is necessarily suboptimal. Yet because the

decomposition for the trefoil knot reveals only two dominant eigenvalues, the spectral
projection is nearly benign. Such a reconstruction of point position (§5.12) utilizing four
nearest neighbors is drawn in Figure 160b; a low-dimensional embedding of the trefoil
knot.

This problem (1334) can, of course, be written equivalently in terms of Gram matrix
G , facilitated by (1006); videlicet, for Φij as in (974)

maximize
G∈SN

c

〈I , G〉
subject to 〈G , Φij〉 = ďij ∀(i , j)∈ I

rankG = 2

G º 0

(1335)

The advantage to converting EDM to Gram is: Gram matrix G is a bridge between
point list X and EDM D ; constraints on any or all of these three variables may now
be introduced. (Example 5.4.2.2.8) Confinement to the geometric center subspace SN

c

(implicit constraint G1 = 0) keeps G independent of its translation-invariant subspace
SN⊥

c (§5.5.1.1, Figure 162) so as not to become numerically unbounded.

A problem dual to maximum variance unfolding problem (1335) (less the Gram rank
constraint) has been called the fastest mixing Markov process. That dual has simple
interpretations in graph and circuit theory and in mechanical and thermal systems,
explored in [357], and has direct application to quick calculation of PageRank by search
engines [247, §4]. Optimal Gram rank turns out to be tightly bounded above by minimum
multiplicity of the second smallest eigenvalue of a dual optimal variable. 2
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Figure 161: Trefoil ribbon (Kilian Weinberger). Same topological transformation algorithm
as in Figure 160b with five nearest neighbors and N = 1617 samples.
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6.8 Dual EDM cone

6.8.1 Ambient SN

We consider finding the ordinary dual EDM cone in ambient space SN where EDMN is
pointed, closed, convex, but not full-dimensional. The set of all EDMs in SN is a closed
convex cone because it is the intersection of halfspaces about the origin in vectorized
variable D (§2.4.1.1.1, §2.7.2):

EDMN =
⋂

z∈N (1T)
i=1...N

{

D ∈ SN | 〈eie
T
i , D〉 ≥ 0 , 〈eie

T
i , D〉 ≤ 0 , 〈zzT,−D〉 ≥ 0

}

(1336)

By definition (296), dual cone K∗ comprises each and every vector inward-normal to a
hyperplane supporting convex cone K . The dual EDM cone in the ambient space of
symmetric matrices is therefore expressible as the aggregate of every conic combination of
inward-normals from (1336):

EDMN∗
= cone{eie

T
i , −eje

T
j | i , j =1 . . . N } − cone{zzT | 11TzzT=0}

= {
N
∑

i=1

ζi eie
T
i −

N
∑

j=1

ξj eje
T
j | ζi , ξj ≥ 0} − cone{zzT | 11TzzT=0}

= {δ(u) | u∈RN} − cone
{

VN υυTV T
N | υ∈RN−1, (‖v‖= 1)

}

⊂ SN

= {δ2(Y ) − VNΨV T
N | Y ∈ SN , Ψ∈ SN−1

+ }

(1337)

The EDM cone is not selfdual in ambient SN because its affine hull belongs to a proper
subspace

aff EDMN = SN
h (1338)

The ordinary dual EDM cone cannot, therefore, be pointed. (§2.13.1.1)

When N = 1, the EDM cone is the point at the origin in R . Auxiliary matrix VN is
empty [ ∅ ] , and dual cone EDM∗ is the real line.

When N = 2, the EDM cone is a nonnegative real line in isometrically isomorphic

R3 ; there S2

h is a real line containing the EDM cone. Dual cone EDM2
∗

is the particular
halfspace in R3 whose boundary has inward-normal EDM2. Diagonal matrices {δ(u)}
in (1337) are represented by a hyperplane through the origin {d | [ 0 1 0 ]d = 0} while
the term cone{VN υυTV T

N } is represented by the halfline T in Figure 156 belonging to
the positive semidefinite cone boundary. The dual EDM cone is formed by translating
the hyperplane along the negative semidefinite halfline −T ; the union of each and every
translation. (confer §2.10.2.0.1)

When cardinality N exceeds 2, the dual EDM cone can no longer be polyhedral simply
because the EDM cone cannot. (§2.13.1.1)
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6.8.1.1 EDM cone and its dual in ambient SN

Consider the two convex cones

K1 , SN
h

K2 ,
⋂

y∈N (1T)

{

A ∈ SN | 〈yyT, −A〉 ≥ 0
}

=
{

A ∈ SN | −zTV A V z ≥ 0 ∀ zzT(º 0)
}

=
{

A ∈ SN | −V A V º 0
}

(1339)

so
K1 ∩ K2 = EDMN (1340)

Dual cone K∗
1 = SN⊥

h ⊆ SN (72) is the subspace of diagonal matrices. From (1337) via
(313),

K∗
2 = − cone

{

VN υυTV T
N | υ∈RN−1

}

⊂ SN (1341)

Gaffke & Mathar [161, §5.3] observe that projection on K1 and K2 have simple closed
forms: Projection on subspace K1 is easily performed by symmetrization and zeroing the
main diagonal or vice versa, while projection of H∈ SN on K2 is6.12

PK2
H = H − PSN

+
(V H V ) (1342)

Proof. First, we observe membership of H−PSN
+
(V H V ) to K2 because

PSN
+
(V H V ) − H =

(

PSN
+
(V H V ) − V H V

)

+ (V H V − H) (1343)

The term PSN
+
(V H V ) − V H V necessarily belongs to the (dual) positive semidefinite cone

by Theorem E.9.2.0.1. V 2 = V , hence

−V
(

H−PSN
+
(V H V )

)

V º 0 (1344)

by Corollary A.3.1.0.5.
Next, we require

〈PK2
H−H , PK2

H 〉 = 0 (1345)

Expanding,

〈−PSN
+
(V H V ) , H−PSN

+
(V H V )〉 = 0 (1346)

〈PSN
+
(V H V ) , (PSN

+
(V H V ) − V H V ) + (V H V − H)〉 = 0 (1347)

〈PSN
+
(V H V ) , (V H V − H)〉 = 0 (1348)

Product V H V belongs to the geometric center subspace; (§E.7.2.0.2)

V H V ∈ SN
c = {Y ∈ SN | N (Y )⊇1} (1349)

6.12 P
SN
+

(V H V ) = 0 for H∈ EDM
N .
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Diagonalize V H V ,QΛQT (§A.5) whose nullspace is spanned by the eigenvectors
corresponding to 0 eigenvalues by Theorem A.7.3.0.1. Projection of V H V on the PSD
cone (§7.1) simply zeroes negative eigenvalues in diagonal matrix Λ . Then

N (PSN
+
(V H V )) ⊇ N (V H V ) (⊇ N (V ) ) (1350)

from which it follows:
PSN

+
(V H V ) ∈ SN

c (1351)

so PSN
+
(V H V ) ⊥ (V H V −H) because V H V −H∈ SN⊥

c .

Finally, we must have PK2
H−H =−PSN

+
(V H V )∈K∗

2 . Dual cone K∗
2 =−F

(

SN
+ ∋V

)

is the negative of the positive semidefinite cone’s smallest face that contains auxiliary

matrix V . (§6.6.1) Thus PSN
+
(V H V )∈F

(

SN
+ ∋V

)

⇔ N (PSN
+
(V H V ))⊇N (V ) (§2.9.2.3)

which was already established in (1350). ¨

From results in §E.7.2.0.2 we know: matrix product V H V =PSN
c

H is the orthogonal

projection of H∈ SN on the geometric center subspace SN
c . Thus the projection product

PK2
H = H − PSN

+
PSN

c
H (1352)

6.8.1.1.1 Lemma. Projection on PSD cone ∩ geometric center subspace.

PSN
+∩ SN

c
= PSN

+
PSN

c
(1353)

⋄

Proof. For each and every H∈ SN , projection of PSN
c

H on the positive semidefinite
cone remains in the geometric center subspace

SN
c = {G∈ SN | G1 = 0}

= {G∈ SN | N (G) ⊇ 1} = {G∈ SN | R(G) ⊆ N (1T)}
= {V Y V | Y ∈ SN} ⊂ SN

(1078)

That is because: eigenvectors of PSN
c

H , corresponding to 0 eigenvalues, span its nullspace
N (PSN

c
H ). (§A.7.3.0.1) To project PSN

c
H on the positive semidefinite cone, its negative

eigenvalues are zeroed. (§7.1.2) The nullspace is thereby expanded while eigenvectors
originally spanning N (PSN

c
H ) remain intact. Because the geometric center subspace is

invariant to projection on the PSD cone, then the rule for projection on a convex set in
a subspace governs (§E.9.5, projectors do not commute) and statement (1353) follows
directly. ¨

From the lemma it follows

{PSN
+
PSN

c
H | H∈ SN} = {PSN

+∩ SN
c

H | H∈ SN} (1354)

Then from (2141)

−
(

SN
c ∩ SN

+

)∗
= {H − PSN

+
PSN

c
H | H∈ SN} (1355)
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svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 162: A plane in isometrically isomorphic R3, orthogonal complement S2⊥
c (2115)

(§B.2) of geometric center subspace (tiled fragment drawn) apparently supports PSD cone
(rounded vertex is plot artifact). Line svec S2

c = aff cone T (1329), intersecting svec ∂S2

+

and drawn in Figure 156, runs along PSD cone boundary. (confer Figure 143)
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− svec ∂S2

+

svec S2⊥
c

0

svec S2

c

svec S2

h

EDM2 = S2

h ∩
(

S2⊥
c − S2

+

)

Figure 163: EDM cone construction in isometrically isomorphic R3 by adding polar PSD

cone to svec S2⊥
c . Difference svec

(

S2⊥
c − S2

+

)

is halfspace partially bounded by svec S2⊥
c .

EDM cone is nonnegative halfline along svec S2

h in this dimension.
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From (313) we get closure of a vector sum

K2 = −
(

SN
c ∩ SN

+

)∗
= SN⊥

c − SN
+ (1356)

therefore the equality [106]

EDMN = K1 ∩ K2 = SN
h ∩

(

SN⊥
c − SN

+

)

(1357)

whose veracity is intuitively evident, in hindsight, [93, p.109] from the most fundamental
EDM definition (976).6.13 A realization of this construction in low dimension is illustrated
in Figure 162 and Figure 163.

The dual EDM cone follows directly from (1357) by standard properties of cones
(§2.13.1.1):

EDMN∗
= K∗

1 + K∗
2 = SN⊥

h − SN
c ∩ SN

+ (1358)

which bears strong resemblance to (1337).

6.8.1.2 nonnegative orthant contains EDMN

That EDMN is a proper subset of the nonnegative orthant is not obvious from (1357).
We wish to verify

EDMN = SN
h ∩

(

SN⊥
c − SN

+

)

⊂ RN×N
+ (1359)

While there are many ways to prove this, it is sufficient to show that all
entries of the extreme directions of EDMN must be nonnegative; id est, for
any particular nonzero vector z = [zi , i=1 . . . N ]∈ N (1T) (§6.4.3.2),

δ(zzT)1T+ 1δ(zzT)T− 2zzT ≥ 0 (1360)

where the inequality denotes entrywise comparison. The inequality holds
because the i , j th entry of an extreme direction is squared: (zi− zj)

2.

We observe that the dyad 2zzT∈ SN
+ belongs to the positive semidefinite

cone, the doublet
δ(zzT)1T+ 1δ(zzT)T ∈ SN⊥

c (1361)

to the orthogonal complement (2115) of the geometric center subspace, while
their difference is a member of the symmetric hollow subspace SN

h . ¨

Here is an algebraic method to prove nonnegativity: Suppose we are given
A∈ SN⊥

c and B = [Bij ]∈ SN
+ and A−B∈ SN

h . Then we have, for some
vector u , A = u1T+ 1uT = [Aij ] = [ui + uj ] and δ(B)= δ(A)= 2u . Positive
semidefiniteness of B requires nonnegativity A−B≥ 0 because

(ei−ej)
TB(ei−ej) = (Bii−Bij)−(Bji−Bjj) = 2(ui+uj)−2Bij ≥ 0 (1362)

¨

6.13Formula (1357) is not a matrix criterion for membership to the EDM cone, it is not an EDM definition,
and it is not an equivalence between EDM operators or an isomorphism. Rather, it is a recipe for
constructing the EDM cone whole from large Euclidean bodies: the positive semidefinite cone, orthogonal
complement of the geometric center subspace, and symmetric hollow subspace.
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6.8.1.3 Dual Euclidean distance matrix criterion

Conditions necessary for membership of a matrix D∗∈ SN to the dual EDM cone EDMN∗

may be derived from (1337): D∗∈ EDMN∗ ⇒ D∗= δ(y)− VNAV T
N for some vector y and

positive semidefinite matrix A ∈ SN−1
+ . This in turn implies δ(D∗ 1) = δ(y). Then, for

D∗∈ SN

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1363)

where, for any symmetric matrix D∗

δ(D∗ 1) − D∗ ∈ SN
c (1364)

To show sufficiency of the matrix criterion in (1363), recall Gram-form EDM
operator

D(G) = δ(G)1T+ 1δ(G)T− 2G (988)

where Gram matrix G is positive semidefinite by definition, and recall the
selfadjointness property of the main-diagonal linear operator δ (§A.1):

〈D , D∗〉 =
〈

δ(G)1T+ 1δ(G)T− 2G , D∗〉 = 〈G , δ(D∗ 1) − D∗〉 2 (1006)

Assuming 〈G , δ(D∗ 1) − D∗〉≥ 0 (1574), then we have known membership
relation (§2.13.2.0.1)

D∗∈ EDMN∗ ⇔ 〈D , D∗〉 ≥ 0 ∀D∈EDMN (1365)

¨

Elegance of this matrix criterion (1363) for membership to the dual EDM cone derives
from lack of any other assumptions except that D∗ be symmetric:6.14 Linear Gram-form
EDM operator D(Y ) (988) has adjoint, for Y ∈ SN

DT(Y ) , (δ(Y 1) − Y ) 2 (1366)

Then from (1365) and (989) we have: [93, p.111]

EDMN∗
= {D∗∈ SN | 〈D , D∗〉 ≥ 0 ∀D∈EDMN}
= {D∗∈ SN | 〈D(G) , D∗〉 ≥ 0 ∀G ∈ SN

+}
= {D∗∈ SN |

〈

G , DT(D∗)
〉

≥ 0 ∀G ∈ SN
+}

= {D∗∈ SN | δ(D∗ 1) − D∗ º 0}

(1367)

the dual EDM cone expressed in terms of the adjoint operator. A dual EDM cone
determined this way is illustrated in Figure 165.

6.8.1.3.1 Exercise. Dual EDM spectral cone.

Find a spectral cone as in §5.11.2 corresponding to EDMN∗
. H

6.14Recall: Schoenberg criterion (995) for membership to the EDM cone requires membership to the
symmetric hollow subspace.
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D◦ = δ(D◦ 1) + (D◦− δ(D◦ 1)) ∈ SN⊥
h ⊕ SN

c ∩ SN
+ = EDMN◦

EDMN◦

EDMN◦

D◦− δ(D◦ 1)δ(D◦ 1)

D◦

0

SN
c ∩ SN

+

SN⊥
h

Figure 164: Hand-drawn abstraction of polar EDM cone EDMN◦
(drawn truncated).

Any member D◦ of polar EDM cone can be decomposed into two linearly independent
nonorthogonal components: δ(D◦ 1) and D◦− δ(D◦ 1).

http://www.convexoptimization.com/dattorro/previous_cover_1.html
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6.8.1.4 Nonorthogonal components of dual EDM

Now we tie construct (1358) for the dual EDM cone together with the matrix criterion
(1363) for dual EDM cone membership. For any D∗∈ SN it is obvious:

δ(D∗ 1) ∈ SN⊥
h (1368)

any diagonal matrix belongs to the subspace of diagonal matrices (67). We know when

D∗∈ EDMN∗

δ(D∗ 1) − D∗ ∈ SN
c ∩ SN

+ (1369)

this adjoint expression (1366) belongs to that face (1327) of the positive semidefinite cone
SN

+ in the geometric center subspace. Any nonzero dual EDM

D∗ = δ(D∗ 1) − (δ(D∗ 1) − D∗) ∈ SN⊥
h ⊖ SN

c ∩ SN
+ = EDMN∗

(1370)

can therefore be expressed as the difference of two linearly independent (when vectorized)
nonorthogonal components (Figure 143, Figure 164).

6.8.1.5 Affine dimension complementarity

From §6.8.1.3 we have, for some A∈ SN−1
+ (confer (1369))

δ(D∗ 1) − D∗ = VNAV T
N ∈ SN

c ∩ SN
+ (1371)

if and only if D∗ belongs to the dual EDM cone. Call rank(VNAV T
N ) dual affine

dimension. Empirically, we find a complementary relationship in affine dimension
between the projection of some arbitrary symmetric matrix H on the polar EDM cone,

EDMN◦
= −EDMN∗

, and its projection on the EDM cone; id est, the optimal solution
of 6.15

minimize
D◦∈ SN

‖D◦ − H‖F

subject to D◦ − δ(D◦ 1) º 0
(1372)

has dual affine dimension complementary to affine dimension corresponding to the optimal
solution of

minimize
D∈SN

h

‖D − H‖F

subject to −V T
NDVN º 0

(1373)

Precisely,
rank(D◦⋆− δ(D◦⋆ 1)) + rank(V T

ND⋆VN ) = N−1 (1374)

6.15This polar projection can be solved quickly (without semidefinite programming) via Lemma 6.8.1.1.1;
rewriting,

minimize
D◦∈ SN

‖(D◦− δ(D◦ 1)) − (H − δ(D◦ 1))‖F

subject to D◦− δ(D◦ 1) º 0

which is the projection of affinely transformed optimal solution H − δ(D◦⋆ 1) on S
N
c ∩ S

N
+ ;

D◦⋆− δ(D◦⋆ 1) = P
SN
+

P
SN

c
(H − δ(D◦⋆ 1))

Foreknowledge of an optimal solution D◦⋆ as argument to projection suggests recursion.
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and rank(D◦⋆− δ(D◦⋆ 1))≤N−1 because vector 1 is always in the nullspace of rank’s
argument. This is similar to the known result for projection on the selfdual positive
semidefinite cone and its polar:

rankP−SN
+

H + rankPSN
+

H = N (1375)

When low affine dimension is a desirable result of projection on the EDM cone,
projection on the polar EDM cone should be performed instead. Convex polar
problem (1372) can be solved for D◦⋆ by transforming to an equivalent Schur-form
semidefinite program (§3.5.2). Interior-point methods for numerically solving semidefinite
programs tend to produce high-rank solutions. (§4.1.2) Then D⋆ = H − D◦⋆∈ EDMN by
Corollary E.9.2.2.1, and D⋆ will tend to have low affine dimension. This approach breaks
when attempting projection on a cone subset discriminated by affine dimension or rank,
because then we have no complementarity relation like (1374) or (1375) (§7.1.4.1).

6.8.1.6 EDM cone is not selfdual

In §5.6.1.1, via Gram-form EDM operator

D(G) = δ(G)1T+ 1δ(G)T− 2G ∈ EDMN ⇐ G º 0 (988)

we established clear connection between the EDM cone and that face (1327) of positive
semidefinite cone SN

+ in the geometric center subspace:

EDMN = D(SN
c ∩ SN

+ ) (1095)

V(EDMN ) = SN
c ∩ SN

+ (1096)

where

V(D) = −V D V 1
2 (1084)

In §5.6.1 we established

SN
c ∩ SN

+ = VN SN−1
+ V T

N (1082)

Then from (1363), (1371), and (1337) we can deduce

δ(EDMN∗
1) − EDMN∗

= VN SN−1
+ V T

N = SN
c ∩ SN

+ (1376)

which, by (1095) and (1096), means the EDM cone can be related to the dual EDM cone
by an equality:

EDMN = D
(

δ(EDMN∗
1) − EDMN∗)

(1377)

V(EDMN ) = δ(EDMN∗
1) − EDMN∗

(1378)

This means projection −V(EDMN ) of the EDM cone on the geometric center subspace

SN
c (§E.7.2.0.2) is a linear transformation of the dual EDM cone: EDMN∗− δ(EDMN∗

1).
Secondarily, it means the EDM cone is not selfdual in SN .
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6.8.1.7 Schoenberg criterion is discretized membership relation

We show the Schoenberg criterion

−V T
NDVN ∈ SN−1

+

D ∈ SN
h

}

⇔ D ∈ EDMN (995)

to be a discretized membership relation (§2.13.4) between a closed convex cone K and its
dual K∗ like

〈y , x〉 ≥ 0 for all y ∈ G(K∗) ⇔ x ∈ K (365)

where G(K∗) is any set of generators whose conic hull constructs closed convex dual
cone K∗:

The Schoenberg criterion is the same as

〈zzT,−D〉 ≥ 0 ∀ zzT | 11TzzT = 0

D ∈ SN
h

}

⇔ D ∈ EDMN (1321)

which, by (1322), is the same as

〈zzT,−D〉 ≥ 0 ∀ zzT∈
{

VN υυTV T
N | υ∈RN−1

}

D ∈ SN
h







⇔ D ∈ EDMN (1379)

where the zzT constitute a set of generators G for the positive semidefinite cone’s smallest

face F
(

SN
+ ∋V

)

(§6.6.1) that contains auxiliary matrix V . From the aggregate in (1337)

we get the ordinary membership relation, assuming only D∈ SN [215, p.58]

〈D∗, D〉 ≥ 0 ∀D∗∈ EDMN∗ ⇔ D ∈ EDMN

〈D∗, D〉 ≥ 0 ∀D∗∈ {δ(u) | u∈RN} − cone
{

VN υυTV T
N | υ∈RN−1

}

⇔ D ∈ EDMN

(1380)

Discretization (365) yields:

〈D∗, D〉 ≥ 0 ∀D∗∈ {eie
T
i , −eje

T
j , −VN υυTV T

N | i , j =1 . . . N , υ∈RN−1} ⇔ D ∈ EDMN

(1381)

Because
〈

{δ(u) | u∈RN} , D
〉

≥ 0 ⇔ D∈ SN
h , we can restrict observation to the

symmetric hollow subspace without loss of generality. Then for D∈ SN
h

〈D∗, D〉 ≥ 0 ∀D∗∈
{

−VN υυTV T
N | υ∈RN−1

}

⇔ D ∈ EDMN (1382)

this discretized membership relation becomes (1379); identical to the Schoenberg criterion.
Hitherto a correspondence between the EDM cone and a face of a PSD cone, the

Schoenberg criterion is now accurately interpreted as a discretized membership relation
between the EDM cone and its ordinary dual.
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6.8.2 Ambient SN
h

When instead we consider the ambient space of symmetric hollow matrices (1338), then
still we find the EDM cone is not selfdual for N > 2. The simplest way to prove this is as
follows:

Given a set of generators G= {Γ} (1298) for the pointed closed convex EDM
cone, the discretized membership theorem in §2.13.4.2.1 asserts that members
of the dual EDM cone in the ambient space of symmetric hollow matrices can
be discerned via discretized membership relation:

EDMN∗∩ SN
h , {D∗∈ SN

h | 〈Γ , D∗〉 ≥ 0 ∀Γ∈ G(EDMN)}
= {D∗∈ SN

h | 〈δ(zzT)1T+ 1δ(zzT)T− 2zzT , D∗〉 ≥ 0 ∀ z∈N (1T)}
= {D∗∈ SN

h | 〈1δ(zzT)T− zzT , D∗〉 ≥ 0 ∀ z∈N (1T)} (1383)

By comparison

EDMN = {D ∈ SN
h | 〈−zzT , D〉 ≥ 0 ∀ z∈N (1T)} (1384)

the term δ(zzT)TD∗1 foils any hope of selfdualness in ambient SN
h . ¨

To find the dual EDM cone in ambient SN
h per §2.13.9.4 we prune the aggregate in

(1337) describing the ordinary dual EDM cone, removing any member having nonzero
main diagonal:

EDMN∗∩ SN
h = cone

{

δ2(VN υυTV T
N ) − VN υυTV T

N | υ∈RN−1
}

= {δ2(VNΨV T
N ) − VNΨV T

N | Ψ∈ SN−1
+ }

(1385)

When N = 1, the EDM cone and its dual in ambient Sh each comprise the origin in
isomorphic R0 ; thus, selfdual in this dimension. (confer (104))

When N = 2, the EDM cone is the nonnegative real line in isomorphic R .

(Figure 156) EDM2
∗

in S2

h is identical, thus selfdual in this dimension. This result

is in agreement with (1383), verified directly: for all κ∈R , z = κ

[

1
−1

]

and

δ(zzT) = κ2

[

1
1

]

⇒ d∗
12≥ 0.

The first case adverse to selfdualness N = 3 may be deduced from Figure 152; the
EDM cone is a circular cone in isomorphic R3 corresponding to no rotation of Lorentz
cone (178) (the selfdual circular cone). Figure 165 illustrates the EDM cone and its dual
in ambient S3

h ; no longer selfdual.

6.8.2.0.1 Exercise. Positive semidefinite cone from EDM cone.
What, if any, is the inversion of semidefinite and distance cone equality (1357)? That is
to say, can S+ be expressed only in terms of EDM , Sh , and Sc ? H

6.8.2.0.2 Exercise. Rank complementarity for EDM cone.
Prove (1374). H
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dvec rel ∂EDM3

dvec rel ∂(EDM3
∗∩ S3

h)

0

D∗∈ EDMN∗ ⇔ δ(D∗ 1) − D∗ º 0 (1363)

Figure 165: Ordinary dual EDM cone projected on S3

h shrouds EDM3 ; drawn tiled in

isometrically isomorphic R3. (It so happens: intersection EDMN∗∩ SN
h (§2.13.9.3) is

identical to projection of dual EDM cone on SN
h .)
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6.9 Theorem of the alternative

In §2.13.2.1.1 we showed how alternative systems of generalized inequality can be derived
from closed convex cones and their duals. This section is, therefore, a fitting postscript to
the discussion of the dual EDM cone.

6.9.0.0.3 Theorem. EDM alternative. [179, §1]
Given D ∈ SN

h

D ∈ EDMN

or in the alternative

∃ z such that

{

1Tz = 1

Dz = 0

(1386)

In words, either N (D) intersects hyperplane {z | 1Tz=1} or D is an EDM; the alternatives
are incompatible. ⋄

When D is an EDM [275, §2]

N (D) ⊂ N (1T) = {z | 1Tz = 0} (1387)

Because [179, §2] (§E.0.1)
DD†1 = 1

1TD†D = 1T (1388)

then
R(1) ⊂ R(D) (1389)

6.10 Postscript

We provided an equality (1357) relating the convex cone of Euclidean distance matrices
to the convex cone of positive semidefinite matrices. Projection on a positive semidefinite
cone, constrained by an upper bound on rank, is easy and well known; [140] simply, a
matter of truncating a list of eigenvalues. Projection on a positive semidefinite cone with
such a rank constraint is, in fact, a convex optimization problem. (§7.1.4)

In the past, it was difficult to project on the EDM cone under a constraint on rank
or affine dimension. A surrogate method was to invoke the Schoenberg criterion (995)
and then project on a positive semidefinite cone under a rank constraint bounding affine
dimension from above. But a solution acquired that way is necessarily suboptimal.

In §7.3.3 we present a method for projecting directly on the EDM cone under a
constraint on rank or affine dimension.


